A new approach for Kalman filtering on mobile robots in the presence of uncertainties

Thomas D. Larsen, N. A. Anderson, Ole Ravn
{"title":"A new approach for Kalman filtering on mobile robots in the presence of uncertainties","authors":"Thomas D. Larsen, N. A. Anderson, Ole Ravn","doi":"10.1109/CCA.1999.801002","DOIUrl":null,"url":null,"abstract":"In many practical Kalman filter applications, the quantity of most significance for the estimation error is the process noise matrix. When filters are stabilized or performance is sought to be improved, tuning of this matrix is the most common method. This tuning process cannot be done before the filter is implemented, as it is primarily made necessary by modelling errors. In this paper, two different methods for modelling the process noise are described and evaluated; a traditional one based on Gaussian noise models and a new one based on propagating modelling uncertainties. We discuss which method to use and how to tune the filter to achieve the lowest estimation error.","PeriodicalId":325193,"journal":{"name":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1999.801002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In many practical Kalman filter applications, the quantity of most significance for the estimation error is the process noise matrix. When filters are stabilized or performance is sought to be improved, tuning of this matrix is the most common method. This tuning process cannot be done before the filter is implemented, as it is primarily made necessary by modelling errors. In this paper, two different methods for modelling the process noise are described and evaluated; a traditional one based on Gaussian noise models and a new one based on propagating modelling uncertainties. We discuss which method to use and how to tune the filter to achieve the lowest estimation error.
一种移动机器人不确定性条件下卡尔曼滤波的新方法
在许多实际的卡尔曼滤波应用中,对估计误差最重要的量是过程噪声矩阵。当滤波器稳定或性能得到改善时,最常用的方法是调整该矩阵。这个调优过程不能在实现过滤器之前完成,因为它主要是由建模错误造成的。本文描述并评价了两种不同的过程噪声建模方法;一种是基于高斯噪声模型的传统方法,另一种是基于传播模型不确定性的新方法。我们将讨论使用哪种方法以及如何调整滤波器以实现最低的估计误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信