Towards the Modeling of Atomic and Molecular Clusters Energy by Support Vector Regression

A. Vítek, Martin Stachon, P. Krömer, V. Snás̃el
{"title":"Towards the Modeling of Atomic and Molecular Clusters Energy by Support Vector Regression","authors":"A. Vítek, Martin Stachon, P. Krömer, V. Snás̃el","doi":"10.1109/INCOS.2013.26","DOIUrl":null,"url":null,"abstract":"Simulations of molecular dynamics play an important role in computational chemistry and physics. Such simulations require accurate information about the state and properties of interacting systems. The computation of water cluster potential energy surface is a complex and computationally expensive operation. Therefore, machine learning methods such as Artificial Neural Networks have been recently employed to machine-learn and further approximate clusters potential energy surfaces. This works presents the application of another highly successful machine learning method, the Support Vector Regression, for the modeling and approximation of the potential energy of water clusters as representatives of more general molecular clusters.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCOS.2013.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Simulations of molecular dynamics play an important role in computational chemistry and physics. Such simulations require accurate information about the state and properties of interacting systems. The computation of water cluster potential energy surface is a complex and computationally expensive operation. Therefore, machine learning methods such as Artificial Neural Networks have been recently employed to machine-learn and further approximate clusters potential energy surfaces. This works presents the application of another highly successful machine learning method, the Support Vector Regression, for the modeling and approximation of the potential energy of water clusters as representatives of more general molecular clusters.
基于支持向量回归的原子和分子簇能量建模研究
分子动力学模拟在计算化学和物理中起着重要的作用。这样的模拟需要关于相互作用系统的状态和属性的准确信息。水团势能面计算是一项复杂且计算量大的工作。因此,人工神经网络等机器学习方法最近被用于机器学习和进一步逼近聚类势能面。这项工作展示了另一种非常成功的机器学习方法的应用,即支持向量回归,用于水簇的势能的建模和近似,作为更一般分子簇的代表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信