Design and Control of a Spherical Robot Using Pendulum and Momentum Wheels

Zhicheng Yuan, Xuechao Chen, Jiahao Wu, Siyu Ren, Zhangguo Yu
{"title":"Design and Control of a Spherical Robot Using Pendulum and Momentum Wheels","authors":"Zhicheng Yuan, Xuechao Chen, Jiahao Wu, Siyu Ren, Zhangguo Yu","doi":"10.1109/ICARM58088.2023.10218907","DOIUrl":null,"url":null,"abstract":"Spherical robot has good potential for complex environment adaptation, but the single internal driving principle limits its multifaceted performance. In this paper, we present a composite driving principle which uses pendulum and momentum wheels. The abilities to change motion state and surmount obstacles have been improved. This article also contains the dynamic analysis and a controller of this driving principle. Finally, we implement necessary simulations and experiments to prove the performance of this driving principle in both aspects.","PeriodicalId":220013,"journal":{"name":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM58088.2023.10218907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spherical robot has good potential for complex environment adaptation, but the single internal driving principle limits its multifaceted performance. In this paper, we present a composite driving principle which uses pendulum and momentum wheels. The abilities to change motion state and surmount obstacles have been improved. This article also contains the dynamic analysis and a controller of this driving principle. Finally, we implement necessary simulations and experiments to prove the performance of this driving principle in both aspects.
摆动量轮球形机器人的设计与控制
球形机器人具有良好的适应复杂环境的潜力,但内部驱动原理单一,限制了其多面性。本文提出了一种利用摆轮和动量轮的复合驱动原理。改变运动状态和跨越障碍的能力得到了提高。本文还对该驱动原理进行了动态分析和控制器设计。最后,我们进行了必要的仿真和实验,以证明该驱动原理在这两个方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信