Leaf multiplicity in a Bienaymé-Galton-Watson tree

Anna M. Brandenberger, L. Devroye, Marcel K. Goh, Rosie Y. Zhao
{"title":"Leaf multiplicity in a Bienaymé-Galton-Watson tree","authors":"Anna M. Brandenberger, L. Devroye, Marcel K. Goh, Rosie Y. Zhao","doi":"10.46298/dmtcs.7515","DOIUrl":null,"url":null,"abstract":"This note defines a notion of multiplicity for nodes in a rooted tree and\npresents an asymptotic calculation of the maximum multiplicity over all leaves\nin a Bienaym\\'e-Galton-Watson tree with critical offspring distribution $\\xi$,\nconditioned on the tree being of size $n$. In particular, we show that if $S_n$\nis the maximum multiplicity in a conditional Bienaym\\'e-Galton-Watson tree,\nthen $S_n = \\Omega(\\log n)$ asymptotically in probability and under the further\nassumption that ${\\bf E}\\{2^\\xi\\} < \\infty$, we have $S_n = O(\\log n)$\nasymptotically in probability as well. Explicit formulas are given for the\nconstants in both bounds. We conclude by discussing links with an alternate\ndefinition of multiplicity that arises in the root-estimation problem.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.7515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This note defines a notion of multiplicity for nodes in a rooted tree and presents an asymptotic calculation of the maximum multiplicity over all leaves in a Bienaym\'e-Galton-Watson tree with critical offspring distribution $\xi$, conditioned on the tree being of size $n$. In particular, we show that if $S_n$ is the maximum multiplicity in a conditional Bienaym\'e-Galton-Watson tree, then $S_n = \Omega(\log n)$ asymptotically in probability and under the further assumption that ${\bf E}\{2^\xi\} < \infty$, we have $S_n = O(\log n)$ asymptotically in probability as well. Explicit formulas are given for the constants in both bounds. We conclude by discussing links with an alternate definition of multiplicity that arises in the root-estimation problem.
bienaym -高尔顿-沃森树的叶片多样性
本文定义了根树中节点多重性的概念,并给出了具有临界子代分布$\xi$的bienaym -高尔顿-沃森树中所有叶子上最大多重性的渐近计算,条件是树的大小为$n$。特别地,我们证明了如果$S_n$是条件bienaym - galton - watson树的最大多重性,那么$S_n = \Omega(\log n)$在概率上是渐近的,并且在进一步的假设${\bf E}\{2^\xi\} < \infty$下,我们也有$S_n = O(\log n)$在概率上是渐近的。给出了两个界内常数的显式公式。最后,我们讨论了在根估计问题中出现的多重性的另一种定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信