The Question of Ambiguity in Mathematics and some of Arising from these Extraordinary Consequences (Elementary Aspect)

Reuven Tint, K. Gandhi, M. Tint
{"title":"The Question of Ambiguity in Mathematics and some of Arising from these Extraordinary Consequences (Elementary Aspect)","authors":"Reuven Tint, K. Gandhi, M. Tint","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.10.1","DOIUrl":null,"url":null,"abstract":"This paper proposes a complete elementary without reference to other sources (except for Euler), first proof of the Fermat's Last Theorem. We resolve the question of the ambiguous expansion in the Binomial theorem, Resolved the question of the ambiguity certain infinite sequences of the Euler. Given other versions proof of FLT, We consider and solve the question of not available modern geometric representation of continuous functions without derivatives at any point.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.10.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a complete elementary without reference to other sources (except for Euler), first proof of the Fermat's Last Theorem. We resolve the question of the ambiguous expansion in the Binomial theorem, Resolved the question of the ambiguity certain infinite sequences of the Euler. Given other versions proof of FLT, We consider and solve the question of not available modern geometric representation of continuous functions without derivatives at any point.
数学中的模糊性问题及由此产生的一些异常结果(初级方面)
本文提出了费马大定理的第一个证明,即不参考其他资料(除欧拉外)的完全初等定理。解决了二项式定理中的模糊展开式问题,解决了欧拉无穷数列的模糊展开式问题。在给定其他版本的FLT证明的情况下,我们考虑并解决了在任意点无导数的连续函数不可用的现代几何表示的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信