Raju Ahamed, M. Varonen, D. Parveg, J. Saijets, K. Halonen
{"title":"Design of high-performance E-band SPDT switch and LNA in 0.13 μm SiGe BiCMOS technology","authors":"Raju Ahamed, M. Varonen, D. Parveg, J. Saijets, K. Halonen","doi":"10.1109/NORCHIP.2017.8124975","DOIUrl":null,"url":null,"abstract":"This paper presents the design of high-performance E-band single-pole double-through (SPDT) switch and low noise amplifier (LNA) as a part of transceiver front-end in an 0.13 μm SiGe BiCMOS technology. The quarter-wave shunt SPDT switch is designed using reverse-saturated SiGe HBTs. The resulting switch exhibits an insertion loss of 2.1 dB, isolation of 26 dB, reflection coefficient better than 18 dB at 75 GHz and provides a bandwidth of more than 35 GHz. The designed switch is integrated with a single-in differential-output (SIDO) low noise amplifier (LNA) and utilized as input matching element of the LNA. The LNA utilizes a common-emitter amplifier at the first stage and a casocode amplifier at the second stage to exploit the advantages of both common-emitter and cascode topologies. The resulting LNA with integrated switch achieves a gain and noise figure(NF) of 26 dB and 6.9 dB, respectively at 75 GHz with a 3 dB bandwidth of 12 GHz. Output referred 1-dB compression point of +5.5 dBm is achieved at 75 GHz. The designed integrated block consumes 45.5 mW of DC power and occupies an area of 720 μm × 580 μm excluding RF pads.","PeriodicalId":373686,"journal":{"name":"2017 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHIP.2017.8124975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper presents the design of high-performance E-band single-pole double-through (SPDT) switch and low noise amplifier (LNA) as a part of transceiver front-end in an 0.13 μm SiGe BiCMOS technology. The quarter-wave shunt SPDT switch is designed using reverse-saturated SiGe HBTs. The resulting switch exhibits an insertion loss of 2.1 dB, isolation of 26 dB, reflection coefficient better than 18 dB at 75 GHz and provides a bandwidth of more than 35 GHz. The designed switch is integrated with a single-in differential-output (SIDO) low noise amplifier (LNA) and utilized as input matching element of the LNA. The LNA utilizes a common-emitter amplifier at the first stage and a casocode amplifier at the second stage to exploit the advantages of both common-emitter and cascode topologies. The resulting LNA with integrated switch achieves a gain and noise figure(NF) of 26 dB and 6.9 dB, respectively at 75 GHz with a 3 dB bandwidth of 12 GHz. Output referred 1-dB compression point of +5.5 dBm is achieved at 75 GHz. The designed integrated block consumes 45.5 mW of DC power and occupies an area of 720 μm × 580 μm excluding RF pads.