Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF

Junying Zhang, Le Wei, Y. Wang
{"title":"Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF","authors":"Junying Zhang, Le Wei, Y. Wang","doi":"10.1109/NNSP.2003.1318040","DOIUrl":null,"url":null,"abstract":"As a common feature in microarray profiling, gene expression profiles represent a composite of more than one distinct sources, which can severely decrease the sensitivity and specificity for the measurement of molecular signatures associated with different disease processes. Independent component analysis (ICA) is a widely applicable approach in blind source separation (BSS) but with limitations that the sources are independent, while a more common situation, which still happens in microarray profiles, is BSS where sources are not statistically independent. A novel idea of BSS is presented: it is a matrix factorization problem without enforcement of statistical characteristics on sources, while blind independent source separation is in fact matrix factorization, to factorize the observation matrix into a mixing matrix and a source matrix where the sources are independent. Since non-negative sources are meaningful in many applications including microarray profiling, we presented that blind non-negative source separation is essentially a matrix factorization, to factorize the observation matrix into a non-negative mixing matrix and a non-negative source matrix where the sources may be dependent. Non-negative matrix factorization (NMF) technique is applied to this non-negative source separation and is proven by a large number of computer simulations and by partial volume correction (PVC) experiments for real microarray data that it is effective when the sources are dependent with each other and/or are Gaussian distributed.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

As a common feature in microarray profiling, gene expression profiles represent a composite of more than one distinct sources, which can severely decrease the sensitivity and specificity for the measurement of molecular signatures associated with different disease processes. Independent component analysis (ICA) is a widely applicable approach in blind source separation (BSS) but with limitations that the sources are independent, while a more common situation, which still happens in microarray profiles, is BSS where sources are not statistically independent. A novel idea of BSS is presented: it is a matrix factorization problem without enforcement of statistical characteristics on sources, while blind independent source separation is in fact matrix factorization, to factorize the observation matrix into a mixing matrix and a source matrix where the sources are independent. Since non-negative sources are meaningful in many applications including microarray profiling, we presented that blind non-negative source separation is essentially a matrix factorization, to factorize the observation matrix into a non-negative mixing matrix and a non-negative source matrix where the sources may be dependent. Non-negative matrix factorization (NMF) technique is applied to this non-negative source separation and is proven by a large number of computer simulations and by partial volume correction (PVC) experiments for real microarray data that it is effective when the sources are dependent with each other and/or are Gaussian distributed.
基于NMF的非负相关源盲分离的分子特征计算分解
作为微阵列谱分析的一个共同特征,基因表达谱代表了一个以上不同来源的组合,这可能严重降低与不同疾病过程相关的分子特征测量的敏感性和特异性。独立分量分析(ICA)是一种广泛应用于盲源分离(BSS)的方法,但存在源独立的局限性,而在微阵列谱图中更常见的情况是源不统计独立的BSS。提出了一种新的BSS思想:它是一个不强加于源的统计特征的矩阵分解问题,而盲独立源分离实际上是矩阵分解,将观测矩阵分解为源独立的混合矩阵和源矩阵。由于非负源在包括微阵列分析在内的许多应用中都有意义,我们提出了盲非负源分离本质上是矩阵分解,将观测矩阵分解为非负混合矩阵和非负源矩阵,其中源可能是相关的。非负矩阵分解(NMF)技术被应用于这种非负源分离,并被大量的计算机模拟和对真实微阵列数据的部分体积校正(PVC)实验证明,当源相互依赖和/或高斯分布时,它是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信