Genetic algorithm for Traveling Salesman Problem

Haojie Xu, Yisu Ge, Guodao Zhang
{"title":"Genetic algorithm for Traveling Salesman Problem","authors":"Haojie Xu, Yisu Ge, Guodao Zhang","doi":"10.1145/3581792.3581798","DOIUrl":null,"url":null,"abstract":"Traveling Salesman Problem (TSP) is one of the most famous NP-hard problems which is hard to find an optimal solution. Many heuristic algorithms are applied to find a suboptimal solution in a limited time. In this paper, we employ a Genetic Algorithm (GA) to solve the TSP, and a further study is conducted by evaluating the performance of different crossover and mutation methods with a heuristic strategy. Four experiments with different parameters are designed, which apply instances from benchmark TSPLIB. Partial-mapped crossover and rotate mutation with offspring-parent competition strategy has shown efficient gets the best results.","PeriodicalId":436413,"journal":{"name":"Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Computational Intelligence and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3581792.3581798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Traveling Salesman Problem (TSP) is one of the most famous NP-hard problems which is hard to find an optimal solution. Many heuristic algorithms are applied to find a suboptimal solution in a limited time. In this paper, we employ a Genetic Algorithm (GA) to solve the TSP, and a further study is conducted by evaluating the performance of different crossover and mutation methods with a heuristic strategy. Four experiments with different parameters are designed, which apply instances from benchmark TSPLIB. Partial-mapped crossover and rotate mutation with offspring-parent competition strategy has shown efficient gets the best results.
旅行商问题的遗传算法
旅行商问题(TSP)是最难以找到最优解的np困难问题之一。许多启发式算法被用于在有限时间内找到次优解。本文采用遗传算法求解TSP,并利用启发式策略对不同交叉和变异方法的性能进行了评价。以TSPLIB为例,设计了4个不同参数的实验。部分映射交叉和旋转突变结合子代-亲代竞争策略得到了最优的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信