Down-step statistics in generalized Dyck paths

Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk
{"title":"Down-step statistics in generalized Dyck paths","authors":"Andrei Asinowski, Benjamin Hackl, Sarah J. Selkirk","doi":"10.46298/dmtcs.7163","DOIUrl":null,"url":null,"abstract":"The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a\ngeneralization of Dyck paths consisting of steps $\\{(1, k), (1, -1)\\}$ such\nthat the path stays (weakly) above the line $y=-t$, is studied. Results are\nproved bijectively and by means of generating functions, and lead to several\ninteresting identities as well as links to other combinatorial structures. In\nparticular, there is a connection between $k_t$-Dyck paths and perforation\npatterns for punctured convolutional codes (binary matrices) used in coding\ntheory. Surprisingly, upon restriction to usual Dyck paths this yields a new\ncombinatorial interpretation of Catalan numbers.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.7163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The number of down-steps between pairs of up-steps in $k_t$-Dyck paths, a generalization of Dyck paths consisting of steps $\{(1, k), (1, -1)\}$ such that the path stays (weakly) above the line $y=-t$, is studied. Results are proved bijectively and by means of generating functions, and lead to several interesting identities as well as links to other combinatorial structures. In particular, there is a connection between $k_t$-Dyck paths and perforation patterns for punctured convolutional codes (binary matrices) used in coding theory. Surprisingly, upon restriction to usual Dyck paths this yields a new combinatorial interpretation of Catalan numbers.
广义Dyck路径的下阶统计量
研究了由阶数$\{(1,k),(1, -1)\}$组成的阶数$k_t$-Dyck路径中阶数$k_t$-Dyck路径中阶数$k_t$-Dyck路径的一般化,使得该路径保持(弱)于直线$y=-t$之上。通过生成函数对结果进行了客观证明,并得出了几个有趣的恒等式以及与其他组合结构的联系。特别是,在编码理论中使用的穿孔卷积码(二进制矩阵)的$k_t$-Dyck路径和穿孔模式之间存在联系。令人惊讶的是,在通常的戴克路径的限制下,这产生了加泰罗尼亚数的一个新的组合解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信