{"title":"The effect of number of Hamiltonian paths on the complexity of a vertex-coloring problem","authors":"U. Manber, M. Tompa","doi":"10.1137/0213008","DOIUrl":null,"url":null,"abstract":"A generalization of Dobkin and Lipton's element uniqueness problem is introduced: for any fixed undirected graph G on vertex set {v1, v2, ..., vn}, the problem is to determine, given n real numbers x1, x2, ..., xn, whether xi ≠ xj for every edge {vi, vj} in G. This problem is shown to have upper and lower bounds of Θ(nlogn) linear comparisons if G is any dense graph. The proof of the lower bound involves showing that any dense graph must contain a subgraph with many Hamiltonian paths, and demonstrating the relevance of these Hamiltonian paths to a geometric argument. In addition, we exhibit relatively sparse graphs for which the same lower bound holds, and relatively dense graphs for which a linear upper bound holds.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0213008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
A generalization of Dobkin and Lipton's element uniqueness problem is introduced: for any fixed undirected graph G on vertex set {v1, v2, ..., vn}, the problem is to determine, given n real numbers x1, x2, ..., xn, whether xi ≠ xj for every edge {vi, vj} in G. This problem is shown to have upper and lower bounds of Θ(nlogn) linear comparisons if G is any dense graph. The proof of the lower bound involves showing that any dense graph must contain a subgraph with many Hamiltonian paths, and demonstrating the relevance of these Hamiltonian paths to a geometric argument. In addition, we exhibit relatively sparse graphs for which the same lower bound holds, and relatively dense graphs for which a linear upper bound holds.