The effect of number of Hamiltonian paths on the complexity of a vertex-coloring problem

U. Manber, M. Tompa
{"title":"The effect of number of Hamiltonian paths on the complexity of a vertex-coloring problem","authors":"U. Manber, M. Tompa","doi":"10.1137/0213008","DOIUrl":null,"url":null,"abstract":"A generalization of Dobkin and Lipton's element uniqueness problem is introduced: for any fixed undirected graph G on vertex set {v1, v2, ..., vn}, the problem is to determine, given n real numbers x1, x2, ..., xn, whether xi ≠ xj for every edge {vi, vj} in G. This problem is shown to have upper and lower bounds of Θ(nlogn) linear comparisons if G is any dense graph. The proof of the lower bound involves showing that any dense graph must contain a subgraph with many Hamiltonian paths, and demonstrating the relevance of these Hamiltonian paths to a geometric argument. In addition, we exhibit relatively sparse graphs for which the same lower bound holds, and relatively dense graphs for which a linear upper bound holds.","PeriodicalId":224735,"journal":{"name":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1981-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd Annual Symposium on Foundations of Computer Science (sfcs 1981)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0213008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

A generalization of Dobkin and Lipton's element uniqueness problem is introduced: for any fixed undirected graph G on vertex set {v1, v2, ..., vn}, the problem is to determine, given n real numbers x1, x2, ..., xn, whether xi ≠ xj for every edge {vi, vj} in G. This problem is shown to have upper and lower bounds of Θ(nlogn) linear comparisons if G is any dense graph. The proof of the lower bound involves showing that any dense graph must contain a subgraph with many Hamiltonian paths, and demonstrating the relevance of these Hamiltonian paths to a geometric argument. In addition, we exhibit relatively sparse graphs for which the same lower bound holds, and relatively dense graphs for which a linear upper bound holds.
哈密顿路径数对顶点着色问题复杂度的影响
引入了Dobkin和Lipton元素唯一性问题的推广:对于顶点集{v1, v2,…, vn},问题是确定,给定n个实数x1, x2,…, xn,对于G中的每条边{vi, vj}, xi是否≠xj。这个问题证明了如果G是任意密集图,则具有Θ(nlogn)线性比较的上界和下界。下界的证明包括证明任何密集图必须包含一个具有许多哈密顿路径的子图,并证明这些哈密顿路径与几何参数的相关性。此外,我们还展示了具有相同下界的相对稀疏图和具有线性上界的相对密集图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信