On the Pearson type VII distribution and the singular integral transformation

K. Takano
{"title":"On the Pearson type VII distribution and the singular integral transformation","authors":"K. Takano","doi":"10.5036/BFSIU1968.19.7","DOIUrl":null,"url":null,"abstract":"It is shown that if m>0\\[ \\frac{x}{(1+x^2)m+1/2}=\\lime→ +0∫|u|≥e\\frac{1}{[1+(x-u)2]m+1/2}km(u)du\\]holds for all x in the pointwise covergence and if m>½ this equality also holds in the Lp norm convergence (p≥1), where km(x) is a singular integral kernel, that is\\[ km(x)=(sgn \\ x)2π-2∫∞0e^{-|x|v}\\frac{dv}{v(J2m(v)+Y2m(v))}.\\]This equality is an extension of the well-known equality \\[ \\frac{x}{1+x2}=\\lime → +0∫|u|≥e\\frac{1}{1+(x-u)2}\\frac{1}{π u}du.\\]","PeriodicalId":141145,"journal":{"name":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Faculty of Science, Ibaraki University. Series A, Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5036/BFSIU1968.19.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

It is shown that if m>0\[ \frac{x}{(1+x^2)m+1/2}=\lime→ +0∫|u|≥e\frac{1}{[1+(x-u)2]m+1/2}km(u)du\]holds for all x in the pointwise covergence and if m>½ this equality also holds in the Lp norm convergence (p≥1), where km(x) is a singular integral kernel, that is\[ km(x)=(sgn \ x)2π-2∫∞0e^{-|x|v}\frac{dv}{v(J2m(v)+Y2m(v))}.\]This equality is an extension of the well-known equality \[ \frac{x}{1+x2}=\lime → +0∫|u|≥e\frac{1}{1+(x-u)2}\frac{1}{π u}du.\]
关于皮尔逊VII型分布和奇异积分变换
如果m>0 \[ \frac{x}{(1+x^2)m+1/2}=\lime→ +0∫|u|≥e\frac{1}{[1+(x-u)2]m+1/2}km(u)du\]在点向收敛中对所有x成立,如果m> 1 / 2在Lp范数收敛(p≥1)中也成立,其中km(x)是一个奇异积分核,即\[ km(x)=(sgn \ x)2π-2∫∞0e^{-|x|v}\frac{dv}{v(J2m(v)+Y2m(v))}.\]\[ \frac{x}{1+x2}=\lime → +0∫|u|≥e\frac{1}{1+(x-u)2}\frac{1}{π u}du.\]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信