Efficient Skip Connections Realization for Secure Inference on Encrypted Data

Nir Drucker, Itamar Zimerman
{"title":"Efficient Skip Connections Realization for Secure Inference on Encrypted Data","authors":"Nir Drucker, Itamar Zimerman","doi":"10.48550/arXiv.2306.06736","DOIUrl":null,"url":null,"abstract":"Homomorphic Encryption (HE) is a cryptographic tool that allows performing computation under encryption, which is used by many privacy-preserving machine learning solutions, for example, to perform secure classification. Modern deep learning applications yield good performance for example in image processing tasks benchmarks by including many skip connections. The latter appears to be very costly when attempting to execute model inference under HE. In this paper, we show that by replacing (mid-term) skip connections with (short-term) Dirac parameterization and (long-term) shared-source skip connection we were able to reduce the skip connections burden for HE-based solutions, achieving x1.3 computing power improvement for the same accuracy.","PeriodicalId":209112,"journal":{"name":"International Conference on Cyber Security Cryptography and Machine Learning","volume":"2009 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Cyber Security Cryptography and Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.06736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Homomorphic Encryption (HE) is a cryptographic tool that allows performing computation under encryption, which is used by many privacy-preserving machine learning solutions, for example, to perform secure classification. Modern deep learning applications yield good performance for example in image processing tasks benchmarks by including many skip connections. The latter appears to be very costly when attempting to execute model inference under HE. In this paper, we show that by replacing (mid-term) skip connections with (short-term) Dirac parameterization and (long-term) shared-source skip connection we were able to reduce the skip connections burden for HE-based solutions, achieving x1.3 computing power improvement for the same accuracy.
加密数据安全推断的高效跳过连接实现
同态加密(HE)是一种允许在加密下执行计算的加密工具,它被许多保护隐私的机器学习解决方案所使用,例如,执行安全分类。现代深度学习应用产生了良好的性能,例如在图像处理任务基准测试中,通过包含许多跳过连接。当试图在HE下执行模型推理时,后者显得非常昂贵。在本文中,我们表明,通过用(短期)Dirac参数化和(长期)共享源跳过连接取代(中期)跳过连接,我们能够减少基于hec的解决方案的跳过连接负担,在相同的精度下实现x1.3的计算能力提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信