SeLiNet: Sentiment enriched Lightweight Network for Emotion Recognition in Images

Tuneer Khargonkar, Shwetank Choudhary, Sumit Kumar, KR BarathRaj
{"title":"SeLiNet: Sentiment enriched Lightweight Network for Emotion Recognition in Images","authors":"Tuneer Khargonkar, Shwetank Choudhary, Sumit Kumar, KR BarathRaj","doi":"10.1109/ISCAS46773.2023.10181844","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a sentiment-enriched lightweight network SeLiNet and an end-to-end on-device pipeline for contextual emotion recognition in images. SeLiNet model consists of body feature extractor, image aesthetics feature extractor, and multitask learning-based fusion network which jointly estimates discrete emotion and human sentiments tasks. On the EMOTIC dataset, the proposed approach achieves an Average Precision (AP) score of 27.17 in comparison to the baseline AP score of 27.38 while reducing the model size by >85%. In addition, we report an on-device AP score of 26.42 with reduction in model size by >93% when compared to the baseline.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a sentiment-enriched lightweight network SeLiNet and an end-to-end on-device pipeline for contextual emotion recognition in images. SeLiNet model consists of body feature extractor, image aesthetics feature extractor, and multitask learning-based fusion network which jointly estimates discrete emotion and human sentiments tasks. On the EMOTIC dataset, the proposed approach achieves an Average Precision (AP) score of 27.17 in comparison to the baseline AP score of 27.38 while reducing the model size by >85%. In addition, we report an on-device AP score of 26.42 with reduction in model size by >93% when compared to the baseline.
SeLiNet:基于情感的图像情感识别轻量级网络
在本文中,我们提出了一个情感丰富的轻量级网络SeLiNet和一个端到端设备上的管道,用于图像中的上下文情感识别。SeLiNet模型由身体特征提取器、图像美学特征提取器和基于多任务学习的融合网络组成,该融合网络联合估计离散情感和人类情感任务。在EMOTIC数据集上,与基线AP得分27.38相比,该方法实现了27.17的平均精度(AP)得分,同时将模型大小减少了85%。此外,我们报告了26.42的设备上AP评分,与基线相比,模型尺寸减少了bb0 93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信