{"title":"Activation of impurity atoms in 4H-SiC wafer by atmospheric pressure thermal plasma jet irradiation","authors":"S. Higashi, K. Maruyama, H. Hanafusa","doi":"10.1109/IWJT.2016.7486676","DOIUrl":null,"url":null,"abstract":"High temperature annealing of 4H-silicon carbide (SiC) wafers was performed by atmospheric-pressure thermal-plasma-jet (TPJ) irradiation. A maximum surface temperature of 1835°C within 2.4 second without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in 4H-SiC wafers were demonstrated. We have investigated the effects of heating rate (R<sub>h</sub>) and cooling rate (R<sub>c</sub>) during rapid annealing of P-implanted 4H-SiC on the activation efficiency. No dependence of resistivity on R<sub>h</sub> was observed, while increasing Rc significantly decreased resistivity. The minimum resistivity of 0.0025 Ω·cm, the maximum electron concentration of 2.9 × 10<sup>20</sup> cm<sup>-3</sup>, respectively, were obtained under R<sub>c</sub> = 568 °C /s.","PeriodicalId":117665,"journal":{"name":"2016 16th International Workshop on Junction Technology (IWJT)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 16th International Workshop on Junction Technology (IWJT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWJT.2016.7486676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High temperature annealing of 4H-silicon carbide (SiC) wafers was performed by atmospheric-pressure thermal-plasma-jet (TPJ) irradiation. A maximum surface temperature of 1835°C within 2.4 second without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in 4H-SiC wafers were demonstrated. We have investigated the effects of heating rate (Rh) and cooling rate (Rc) during rapid annealing of P-implanted 4H-SiC on the activation efficiency. No dependence of resistivity on Rh was observed, while increasing Rc significantly decreased resistivity. The minimum resistivity of 0.0025 Ω·cm, the maximum electron concentration of 2.9 × 1020 cm-3, respectively, were obtained under Rc = 568 °C /s.