Low-resource named entity recognition via multi-source projection: Not quite there yet?

NUT@EMNLP Pub Date : 2018-11-01 DOI:10.18653/v1/W18-6125
Jan Vium Enghoff, S. Harrison, Zeljko Agic
{"title":"Low-resource named entity recognition via multi-source projection: Not quite there yet?","authors":"Jan Vium Enghoff, S. Harrison, Zeljko Agic","doi":"10.18653/v1/W18-6125","DOIUrl":null,"url":null,"abstract":"Projecting linguistic annotations through word alignments is one of the most prevalent approaches to cross-lingual transfer learning. Conventional wisdom suggests that annotation projection “just works” regardless of the task at hand. We carefully consider multi-source projection for named entity recognition. Our experiment with 17 languages shows that to detect named entities in true low-resource languages, annotation projection may not be the right way to move forward. On a more positive note, we also uncover the conditions that do favor named entity projection from multiple sources. We argue these are infeasible under noisy low-resource constraints.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"08 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-6125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Projecting linguistic annotations through word alignments is one of the most prevalent approaches to cross-lingual transfer learning. Conventional wisdom suggests that annotation projection “just works” regardless of the task at hand. We carefully consider multi-source projection for named entity recognition. Our experiment with 17 languages shows that to detect named entities in true low-resource languages, annotation projection may not be the right way to move forward. On a more positive note, we also uncover the conditions that do favor named entity projection from multiple sources. We argue these are infeasible under noisy low-resource constraints.
通过多源投影识别低资源命名实体:还没有完全实现?
通过单词对齐投射语言注释是跨语言迁移学习中最流行的方法之一。传统观点认为,无论手头的任务是什么,注释投影“都能正常工作”。我们仔细考虑多源投影用于命名实体识别。我们对17种语言的实验表明,要在真正的低资源语言中检测命名实体,注释投影可能不是正确的前进方式。从更积极的方面来看,我们还发现了有利于来自多个来源的命名实体投影的条件。我们认为这些在嘈杂的低资源约束下是不可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信