Feature-oriented modularization of deep learning APIs

Ye Shi, J. Kienzle, Jinrong Guo
{"title":"Feature-oriented modularization of deep learning APIs","authors":"Ye Shi, J. Kienzle, Jinrong Guo","doi":"10.1145/3550356.3561575","DOIUrl":null,"url":null,"abstract":"Deep learning libraries provide vast APIs because of the multitude of supported input data types, pre-processing operations, and neural network types and configuration options. However, developers working on one concrete application typically use only a small subset of the API at any one given time. Newcomers hence have to read through tutorials and API documentation, gathering scattered information, trying to find the API that fits their needs. This is time consuming and error prone. To remedy this, we show how we modularized the API of a popular Java DL framework Deeplearning4j (DL4J) according to features. Beginner developers can interactively select desired high level features, and our tool generates the subset of the DL library API that corresponds to the selected features. We evaluate our modularization on DL4J code samples, demonstrating an average recall of 98.9% for API classes and 98.0% for API methods. The respective precision is 19.3% and 13.8%, which represents an improvement of two orders of magnitude compared to the complete DL4J API.","PeriodicalId":182662,"journal":{"name":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550356.3561575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning libraries provide vast APIs because of the multitude of supported input data types, pre-processing operations, and neural network types and configuration options. However, developers working on one concrete application typically use only a small subset of the API at any one given time. Newcomers hence have to read through tutorials and API documentation, gathering scattered information, trying to find the API that fits their needs. This is time consuming and error prone. To remedy this, we show how we modularized the API of a popular Java DL framework Deeplearning4j (DL4J) according to features. Beginner developers can interactively select desired high level features, and our tool generates the subset of the DL library API that corresponds to the selected features. We evaluate our modularization on DL4J code samples, demonstrating an average recall of 98.9% for API classes and 98.0% for API methods. The respective precision is 19.3% and 13.8%, which represents an improvement of two orders of magnitude compared to the complete DL4J API.
面向特征的深度学习api模块化
深度学习库提供了大量的api,因为支持大量的输入数据类型、预处理操作、神经网络类型和配置选项。但是,开发一个具体应用程序的开发人员在任何给定时间通常只使用API的一小部分。因此,新手必须通读教程和API文档,收集分散的信息,试图找到适合他们需求的API。这既耗时又容易出错。为了解决这个问题,我们将展示如何根据特性模块化流行的Java DL框架Deeplearning4j (DL4J)的API。初级开发人员可以交互式地选择所需的高级功能,我们的工具生成与所选功能对应的DL库API子集。我们在DL4J代码样本上评估我们的模块化,显示API类的平均召回率为98.9%,API方法的平均召回率为98.0%。精度分别为19.3%和13.8%,与完整的DL4J API相比,这代表了两个数量级的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信