Optimal Design Techniques for Distributed Parameter Systems

H. Banks, D. Rubio, N. Saintier, M. I. Troparevsky
{"title":"Optimal Design Techniques for Distributed Parameter Systems","authors":"H. Banks, D. Rubio, N. Saintier, M. I. Troparevsky","doi":"10.1137/1.9781611973273.12","DOIUrl":null,"url":null,"abstract":"Parameter estimation problems consist in approximating parameter values of a given mathematical model based on measured data. They are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data. The problem of collecting data in the “best way” in order to assure a statistically efficient estimate of the parameter is known as Optimal Design. In this work we consider the problem of finding optimal locations for source identification in the 3D unit sphere from data on its boundary. We apply three different optimal design criteria to this 3D problem: the Incremental Generalized Sensitivity Function (IGSF), the classical D-optimal criterion and the SE-criterion recently introduced in [3]. The estimation of the parameters is then obtained by means of the Ordinary Least Square procedure. In order to analyze the performance of each strategy, the data are numerically simulated and the estimated values are compared with the values used for simulation.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611973273.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Parameter estimation problems consist in approximating parameter values of a given mathematical model based on measured data. They are usually formulated as optimization problems and the accuracy of their solutions depends not only on the chosen optimization scheme but also on the given data. The problem of collecting data in the “best way” in order to assure a statistically efficient estimate of the parameter is known as Optimal Design. In this work we consider the problem of finding optimal locations for source identification in the 3D unit sphere from data on its boundary. We apply three different optimal design criteria to this 3D problem: the Incremental Generalized Sensitivity Function (IGSF), the classical D-optimal criterion and the SE-criterion recently introduced in [3]. The estimation of the parameters is then obtained by means of the Ordinary Least Square procedure. In order to analyze the performance of each strategy, the data are numerically simulated and the estimated values are compared with the values used for simulation.
分布参数系统的优化设计技术
参数估计问题是根据实测数据逼近给定数学模型的参数值。它们通常被表述为优化问题,其解的准确性不仅取决于所选择的优化方案,还取决于给定的数据。以“最佳方式”收集数据以保证对参数的统计有效估计的问题被称为最优设计。在这项工作中,我们考虑了从三维单位球的边界数据中寻找最优源识别位置的问题。我们将三种不同的优化设计准则应用于这个三维问题:增量广义灵敏度函数(IGSF)、经典的d -最优准则和最近在[3]中引入的se准则。然后用普通最小二乘方法得到参数的估计。为了分析每种策略的性能,对数据进行了数值模拟,并将估计值与仿真值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信