K. Buddharaju, N. Singh, S. Rustagi, S. Teo, L. Wong, L. Tang, C. Tung, G. Lo, N. Balasubramanian, D. Kwong
{"title":"Gate-all-around Si-nanowire CMOS inverter logic fabricated using top-down approach","authors":"K. Buddharaju, N. Singh, S. Rustagi, S. Teo, L. Wong, L. Tang, C. Tung, G. Lo, N. Balasubramanian, D. Kwong","doi":"10.1109/ESSDERC.2007.4430938","DOIUrl":null,"url":null,"abstract":"We present, for the first time, the monolithic integration of Gate-Ail-Around (GAA) Si-nanowire FETs into CMOS logic using top-down approach. The drive currents for N-and P-MOS transistors are matched using different number of channels for each to obtain symmetric pull-up and pull-down characteristics. Sharp ON-OFF transitions with high voltage gains (up to -45) are obtained which are best reported among the nanowire and carbon nanotube inverters. The inverters maintain their good transfer characteristics and noise margins for a wide range of VDD values, down to 0.2 V. Short circuit current at 0.2 V VDD is ~6 pA indicating excellent potential of these devices for low voltage and ultra low power applications. These results excel those reported in the literature for nanowire as well as FinFET (non-classical CMOS) inverters.","PeriodicalId":103959,"journal":{"name":"ESSDERC 2007 - 37th European Solid State Device Research Conference","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSDERC 2007 - 37th European Solid State Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSDERC.2007.4430938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28
Abstract
We present, for the first time, the monolithic integration of Gate-Ail-Around (GAA) Si-nanowire FETs into CMOS logic using top-down approach. The drive currents for N-and P-MOS transistors are matched using different number of channels for each to obtain symmetric pull-up and pull-down characteristics. Sharp ON-OFF transitions with high voltage gains (up to -45) are obtained which are best reported among the nanowire and carbon nanotube inverters. The inverters maintain their good transfer characteristics and noise margins for a wide range of VDD values, down to 0.2 V. Short circuit current at 0.2 V VDD is ~6 pA indicating excellent potential of these devices for low voltage and ultra low power applications. These results excel those reported in the literature for nanowire as well as FinFET (non-classical CMOS) inverters.