A Heuristic-Based Approach to Identify Concepts in Execution Traces

F. Asadi, M. D. Penta, G. Antoniol, Yann-Gaël Guéhéneuc
{"title":"A Heuristic-Based Approach to Identify Concepts in Execution Traces","authors":"F. Asadi, M. D. Penta, G. Antoniol, Yann-Gaël Guéhéneuc","doi":"10.1109/CSMR.2010.17","DOIUrl":null,"url":null,"abstract":"Concept or feature identification, i.e., the identification of the source code fragments implementing a particular feature, is a crucial task during software understanding and maintenance. This paper proposes an approach to identify concepts in execution traces by finding cohesive and decoupled fragments of the traces. The approach relies on search-based optimization techniques, textual analysis of the system source code using latent semantic indexing, and trace compression techniques. It is evaluated to identify features from execution traces of two open source systems from different domains, JHotDraw and ArgoUML. Results show that the approach is always able to identify trace segments implementing concepts with a high precision and, for highly cohesive concepts, with a high overlap with the manually-built oracle.","PeriodicalId":307062,"journal":{"name":"2010 14th European Conference on Software Maintenance and Reengineering","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 14th European Conference on Software Maintenance and Reengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSMR.2010.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Concept or feature identification, i.e., the identification of the source code fragments implementing a particular feature, is a crucial task during software understanding and maintenance. This paper proposes an approach to identify concepts in execution traces by finding cohesive and decoupled fragments of the traces. The approach relies on search-based optimization techniques, textual analysis of the system source code using latent semantic indexing, and trace compression techniques. It is evaluated to identify features from execution traces of two open source systems from different domains, JHotDraw and ArgoUML. Results show that the approach is always able to identify trace segments implementing concepts with a high precision and, for highly cohesive concepts, with a high overlap with the manually-built oracle.
一种基于启发式的方法来识别执行轨迹中的概念
概念或特征识别,即实现特定特性的源代码片段的识别,是软件理解和维护期间的关键任务。本文提出了一种通过寻找执行轨迹的内聚和解耦片段来识别执行轨迹中的概念的方法。该方法依赖于基于搜索的优化技术、使用潜在语义索引对系统源代码进行文本分析以及跟踪压缩技术。它被评估为从两个来自不同领域的开源系统(JHotDraw和ArgoUML)的执行轨迹中识别特征。结果表明,该方法总是能够以高精度识别实现概念的跟踪段,并且对于高度内聚的概念,与手动构建的oracle具有高度重叠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信