Data Driven Low-Complexity DOA Estimation for Ultra-Short Range Automotive Radar

Yixin Song, Yang Li, Cheng Zhang, Yongming Huang
{"title":"Data Driven Low-Complexity DOA Estimation for Ultra-Short Range Automotive Radar","authors":"Yixin Song, Yang Li, Cheng Zhang, Yongming Huang","doi":"10.1109/SiPS47522.2019.9020602","DOIUrl":null,"url":null,"abstract":"In recent applications of millimeter wave automotive radars, the short range detection and estimation performance becomes an important design metric. Due to the sphere rather than plane form of array incoming signals, direct use of conventional spectrum or direction of arrival (DOA) estimators generally result in large performance degradation. In this paper, a naive look-up table based solution is first introduced. To solve its involved large storage requirement problem, we further transform the DOA estimation problem into the DOA classification problem, and utilize the support vector machine (SVM) framework to propose a data-driven low-complexity DOA estimator. Simulations validate the effectiveness of the propose SVM solution especially for small sample set and high storage limit.","PeriodicalId":256971,"journal":{"name":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS47522.2019.9020602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent applications of millimeter wave automotive radars, the short range detection and estimation performance becomes an important design metric. Due to the sphere rather than plane form of array incoming signals, direct use of conventional spectrum or direction of arrival (DOA) estimators generally result in large performance degradation. In this paper, a naive look-up table based solution is first introduced. To solve its involved large storage requirement problem, we further transform the DOA estimation problem into the DOA classification problem, and utilize the support vector machine (SVM) framework to propose a data-driven low-complexity DOA estimator. Simulations validate the effectiveness of the propose SVM solution especially for small sample set and high storage limit.
数据驱动的超近程汽车雷达低复杂度DOA估计
在毫米波汽车雷达的应用中,近距离探测和估计性能成为一项重要的设计指标。由于阵列输入信号是球形而不是平面形式,直接使用传统的频谱或到达方向(DOA)估计器通常会导致很大的性能下降。本文首先介绍了一种基于朴素查表的解决方案。为了解决其涉及的大存储需求问题,我们进一步将DOA估计问题转化为DOA分类问题,并利用支持向量机(SVM)框架提出了一种数据驱动的低复杂度DOA估计器。仿真结果验证了该方法在小样本集和高存储限制情况下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信