A Derivation of Proca Equations on Cantor Sets: A Local Fractional Approach

V. Christianto, Biruduganti. Rahul
{"title":"A Derivation of Proca Equations on Cantor Sets: A Local Fractional Approach","authors":"V. Christianto, Biruduganti. Rahul","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.10.48","DOIUrl":null,"url":null,"abstract":"In a recent paper published at Advances in High Energy Physics (AHEP) journal, Yang Zhao et al. derived Maxwell equations on Cantor sets from the local fractional vector calculus. It can be shown that Maxwell equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Using the same approach, elsewhere Yang, Baleanu & Tenreiro Machado derived systems of Navier-Stokes equations on Cantor sets. However, so far there is no derivation of Proca equations on Cantor sets. Therefore, in this paper we present for the first time a derivation of Proca equations and GravitoElectroMagnetic (GEM) Proca-type equations on Cantor sets. Considering that Proca equations may be used to explain electromagnetic effects in superconductor, We suggest that Proca equations on Cantor sets can describe electromagnetic of fractal superconductors; besides GEM Proca-type equations on Cantor sets may be used to explain some gravitoelectromagnetic effects of superconductor for fractal media. It is hoped that this paper may stimulate further investigations and experiments in particular for fractal superconductor. It may be expected to have some impact to fractal cosmology modeling too.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.10.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In a recent paper published at Advances in High Energy Physics (AHEP) journal, Yang Zhao et al. derived Maxwell equations on Cantor sets from the local fractional vector calculus. It can be shown that Maxwell equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. Using the same approach, elsewhere Yang, Baleanu & Tenreiro Machado derived systems of Navier-Stokes equations on Cantor sets. However, so far there is no derivation of Proca equations on Cantor sets. Therefore, in this paper we present for the first time a derivation of Proca equations and GravitoElectroMagnetic (GEM) Proca-type equations on Cantor sets. Considering that Proca equations may be used to explain electromagnetic effects in superconductor, We suggest that Proca equations on Cantor sets can describe electromagnetic of fractal superconductors; besides GEM Proca-type equations on Cantor sets may be used to explain some gravitoelectromagnetic effects of superconductor for fractal media. It is hoped that this paper may stimulate further investigations and experiments in particular for fractal superconductor. It may be expected to have some impact to fractal cosmology modeling too.
Cantor集上Proca方程的求导:一个局部分数方法
在最近发表在《高能物理进展》(AHEP)杂志上的一篇论文中,Yang Zhao等人从局部分数向量微积分中推导出了Cantor集上的Maxwell方程。结果表明,分形有界域上Cantor集合上的Maxwell方程对分形电场和磁场的描述是有效和准确的。Yang、Baleanu和Tenreiro Machado用同样的方法在其他地方推导出了康托集上的Navier-Stokes方程组。然而,到目前为止,还没有关于康托集的Proca方程的推导。因此,本文首次给出了Proca方程和重力电磁Proca型方程在Cantor集上的推导。考虑到Proca方程可以用来解释超导体中的电磁效应,我们认为Cantor集上的Proca方程可以描述分形超导体中的电磁效应;此外,Cantor集上的GEM proca型方程可以用来解释分形介质中超导体的一些引力电磁效应。希望本文能对分形超导体的进一步研究和实验有所启发。它也可能对分形宇宙学建模产生一些影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信