Wiwy Wudjud, Chan Dang, Kah Chin Cheong, Gregory B. Collins, C. Penley
{"title":"Applications of PVC and Progressive FIB Milling in Identifying Top-Down Invisible Defect on Advanced Nodes SRAM Devices","authors":"Wiwy Wudjud, Chan Dang, Kah Chin Cheong, Gregory B. Collins, C. Penley","doi":"10.31399/asm.cp.istfa2022p0347","DOIUrl":null,"url":null,"abstract":"\n Passive voltage contrast (PVC) is a well-known fault isolation technique in differentiating contrast at via/metal/contact levels while focused ion beam (FIB) is a destructive technique specifically used for cross sectioning once a defect is identified. In this study, we highlight a combination technique of PVC and progressive FIB milling on advanced node fin field-effect transistor (FinFET) for root cause analysis. This combo technique is useful when applied on high-density static random access memory (SRAM) structure, especially when it is difficult to view the defect from top-down inspection. In this paper, we create a FA flow chart and FIB deposition/milling recipe for SRAM failure and successfully apply them to three case studies.","PeriodicalId":417175,"journal":{"name":"International Symposium for Testing and Failure Analysis","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2022p0347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Passive voltage contrast (PVC) is a well-known fault isolation technique in differentiating contrast at via/metal/contact levels while focused ion beam (FIB) is a destructive technique specifically used for cross sectioning once a defect is identified. In this study, we highlight a combination technique of PVC and progressive FIB milling on advanced node fin field-effect transistor (FinFET) for root cause analysis. This combo technique is useful when applied on high-density static random access memory (SRAM) structure, especially when it is difficult to view the defect from top-down inspection. In this paper, we create a FA flow chart and FIB deposition/milling recipe for SRAM failure and successfully apply them to three case studies.