Ensemble Methods for Continuous Affect Recognition: Multi-modality, Temporality, and Challenges

Markus Kächele, Patrick Thiam, G. Palm, F. Schwenker, Martin Schels
{"title":"Ensemble Methods for Continuous Affect Recognition: Multi-modality, Temporality, and Challenges","authors":"Markus Kächele, Patrick Thiam, G. Palm, F. Schwenker, Martin Schels","doi":"10.1145/2808196.2811637","DOIUrl":null,"url":null,"abstract":"In this paper we present a multi-modal system based on audio, video and bio-physiological features for continuous recognition of human affect in unconstrained scenarios. We leverage the robustness of ensemble classifiers as base learners and refine the predictions using stochastic gradient descent based optimization on the desired loss function. Furthermore we provide a discussion about pre- and post-processing steps that help to improve the robustness of the regression and subsequently the prediction quality.","PeriodicalId":123597,"journal":{"name":"Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Audio/Visual Emotion Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2808196.2811637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

In this paper we present a multi-modal system based on audio, video and bio-physiological features for continuous recognition of human affect in unconstrained scenarios. We leverage the robustness of ensemble classifiers as base learners and refine the predictions using stochastic gradient descent based optimization on the desired loss function. Furthermore we provide a discussion about pre- and post-processing steps that help to improve the robustness of the regression and subsequently the prediction quality.
连续情感识别的集成方法:多模态、时效性和挑战
本文提出了一种基于音频、视频和生物生理特征的多模态系统,用于无约束场景下人类情感的连续识别。我们利用集成分类器作为基础学习器的鲁棒性,并使用基于期望损失函数的随机梯度下降优化来改进预测。此外,我们还讨论了有助于提高回归稳健性和预测质量的预处理和后处理步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信