Nonlinear Fuzzy Robust PCA on Shape Modelling of Active Appearance Model for Facial Expression Recognition

Nunik Pratiwi, M. R. Widyanto, T. Basaruddin, D. Liliana
{"title":"Nonlinear Fuzzy Robust PCA on Shape Modelling of Active Appearance Model for Facial Expression Recognition","authors":"Nunik Pratiwi, M. R. Widyanto, T. Basaruddin, D. Liliana","doi":"10.1145/3177404.3177444","DOIUrl":null,"url":null,"abstract":"Automatic facial expression recognition is one of the potential research area in the field of computer vison. It aims to improve the ability of machine to capture social signals in human. Automatic facial expression recognition is still a challenge. We proposed method using contrast limited adaptive histogram equalization (CLAHE) for pre-processing stage then performed feature extraction using active appearance model (AAM) based on nonlinear fuzzy robust principal component analysis (NFRPCA). The feature extraction results will be classified with support vector machine (SVM). Feature points generated AAM based on NFRPCA more adaptive compared to AAM based PCA. Our proposed method's the average accuracy rate reached 96,87% and 93,94% for six and seven basic emotions respectively.","PeriodicalId":133378,"journal":{"name":"Proceedings of the International Conference on Video and Image Processing","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Video and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3177404.3177444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic facial expression recognition is one of the potential research area in the field of computer vison. It aims to improve the ability of machine to capture social signals in human. Automatic facial expression recognition is still a challenge. We proposed method using contrast limited adaptive histogram equalization (CLAHE) for pre-processing stage then performed feature extraction using active appearance model (AAM) based on nonlinear fuzzy robust principal component analysis (NFRPCA). The feature extraction results will be classified with support vector machine (SVM). Feature points generated AAM based on NFRPCA more adaptive compared to AAM based PCA. Our proposed method's the average accuracy rate reached 96,87% and 93,94% for six and seven basic emotions respectively.
基于非线性模糊鲁棒主成分分析的面部表情识别主动外观模型形状建模
面部表情自动识别是计算机视觉领域一个很有潜力的研究方向。它旨在提高机器捕捉人类社会信号的能力。自动面部表情识别仍然是一个挑战。提出了采用对比度有限自适应直方图均衡化(CLAHE)进行预处理的方法,然后采用基于非线性模糊鲁棒主成分分析(NFRPCA)的主动外观模型(AAM)进行特征提取。特征提取结果将使用支持向量机(SVM)进行分类。与基于AAM的PCA相比,基于NFRPCA生成的AAM特征点更具自适应性。该方法对6种基本情绪和7种基本情绪的平均准确率分别达到96.87%和93.94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信