Human Tracking Using Spatialized Multi-level Histogram and Mean Shift

A. Shabani, M. H. Ghaeminia, S. B. Shokouhi
{"title":"Human Tracking Using Spatialized Multi-level Histogram and Mean Shift","authors":"A. Shabani, M. H. Ghaeminia, S. B. Shokouhi","doi":"10.1109/CRV.2010.27","DOIUrl":null,"url":null,"abstract":"Sequential object tracking using mean shift method has become a convenient approach. In this method, an object of interest is represented by its global feature such as a color histogram. The next position of the target is then estimated through a constraint histogram matching. The linearization of the histogram matching metric might not work properly, especially when the target undergoes occlusion, there is an abrupt motion, or when multiple objects exist with similar global but different local structures. We propose a multi-level global-to-local histogramming approach in which the associated spatial information is also encoded in the object’s representation. Specifically, for human shape/appearance encoding, the global histogram resembles the main root and the local histograms correspond to the body parts. In an experiment on a publically available CAVIAR dataset, the proposed representation provides an appropriate sequential matching of a human with abrupt motion and partial occlusion. In addition to a better localization, the proposed approach handles the situations in which the standard mean shift fails.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Sequential object tracking using mean shift method has become a convenient approach. In this method, an object of interest is represented by its global feature such as a color histogram. The next position of the target is then estimated through a constraint histogram matching. The linearization of the histogram matching metric might not work properly, especially when the target undergoes occlusion, there is an abrupt motion, or when multiple objects exist with similar global but different local structures. We propose a multi-level global-to-local histogramming approach in which the associated spatial information is also encoded in the object’s representation. Specifically, for human shape/appearance encoding, the global histogram resembles the main root and the local histograms correspond to the body parts. In an experiment on a publically available CAVIAR dataset, the proposed representation provides an appropriate sequential matching of a human with abrupt motion and partial occlusion. In addition to a better localization, the proposed approach handles the situations in which the standard mean shift fails.
基于空间化多层次直方图和均值漂移的人体跟踪
采用均值移位法进行序列目标跟踪已成为一种方便的方法。在这种方法中,感兴趣的对象由其全局特征(如颜色直方图)表示。然后通过约束直方图匹配估计目标的下一个位置。直方图匹配度量的线性化可能不能很好地工作,特别是当目标被遮挡,有一个突然的运动,或者当多个目标存在相似的全局但不同的局部结构时。我们提出了一种多层次的全局到局部直方图方法,其中相关的空间信息也编码在对象的表示中。具体来说,对于人体形状/外观编码,全局直方图类似于主根,局部直方图对应于身体部位。在公开可用的CAVIAR数据集上进行的实验中,提出的表示提供了具有突然运动和部分遮挡的人的适当顺序匹配。除了更好的定位外,该方法还处理了标准均值移位失败的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信