Frequency Domain Gaussian Process Models for H∞ Uncertainties

Alex Devonport, P. Seiler, M. Arcak
{"title":"Frequency Domain Gaussian Process Models for H∞ Uncertainties","authors":"Alex Devonport, P. Seiler, M. Arcak","doi":"10.48550/arXiv.2211.15923","DOIUrl":null,"url":null,"abstract":"Complex-valued Gaussian processes are used in Bayesian frequency-domain system identification as prior models for regression. If each realization of such a process were an H∞ function with probability one, then the same model could be used for probabilistic robust control, allowing for robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian process to have this property. For the special case of processes whose Hermitian covariance is stationary, we provide an explicit parameterization of the covariance structure in terms of a summable sequence of nonnegative numbers.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.15923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Complex-valued Gaussian processes are used in Bayesian frequency-domain system identification as prior models for regression. If each realization of such a process were an H∞ function with probability one, then the same model could be used for probabilistic robust control, allowing for robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian process to have this property. For the special case of processes whose Hermitian covariance is stationary, we provide an explicit parameterization of the covariance structure in terms of a summable sequence of nonnegative numbers.
H∞不确定性的频域高斯过程模型
在贝叶斯频域系统辨识中使用复值高斯过程作为回归的先验模型。如果这样一个过程的每个实现都是一个概率为1的H∞函数,那么相同的模型可以用于概率鲁棒控制,允许鲁棒安全学习。我们研究了一般复域高斯过程具有这一性质的充分条件。对于厄密协方差为平稳的特殊情况,我们给出了用非负数可和数列表示的协方差结构的显式参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信