B. Ji, S. Munetoh, Chorng-Lii Hwang, M. Wordeman, T. Kirihata
{"title":"Destructive-read random access memory system buffered with destructive-read memory cache for SoC applications","authors":"B. Ji, S. Munetoh, Chorng-Lii Hwang, M. Wordeman, T. Kirihata","doi":"10.1109/VLSIC.2003.1221169","DOIUrl":null,"url":null,"abstract":"This paper describes a novel random access memory system. The system is based on a destructive-read memory buffered by a destructive-read memory cache for hidden write back. SRAM comparable random access cycle time (tRC) is achieved, as tRC of the architecture is limited only by the destructive-read time of the memory array. By using a DRAM array as cache, the silicon area is reduced by about 25% from SRAM-cache system. Write back algorithms have been proved by mathematical models, and confirmed by simulations.","PeriodicalId":270304,"journal":{"name":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2003.1221169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
This paper describes a novel random access memory system. The system is based on a destructive-read memory buffered by a destructive-read memory cache for hidden write back. SRAM comparable random access cycle time (tRC) is achieved, as tRC of the architecture is limited only by the destructive-read time of the memory array. By using a DRAM array as cache, the silicon area is reduced by about 25% from SRAM-cache system. Write back algorithms have been proved by mathematical models, and confirmed by simulations.