{"title":"Sistem klasifikasi jenis sayuran menggunakan algoritma pca dan k-nn","authors":"Z. Zulfahmi, Laila Qadriah","doi":"10.47647/jrr.v5i1.1169","DOIUrl":null,"url":null,"abstract":"Salah satu bentuk dari kecerdasan tiruan adalah pendeteksian secara otomatis terhadap citra gambar sehingga sistem dapat menentukan dengan tepat jenis gambar tersebut atau biasa disebut computer vision. sayuran merupakan jenistanamanyang banyak dijumpai di Indonesia, akan tetapi banyak dari jenissayuranyang ada di masyarakat berkualitas kurang baik sehingga merugikan konsumen. Oleh karena itu diperlukan sebuah sistem yang dapat mendeteksi kualitas dari sayuran tersebut. Algoritma Principal Component Analysis (PCA) dan algoritma k-nearest neighbor (K-NN) dapat dikombinasikan untuk melakukan pekerjaan tersebut. PCA merupakan algoritma yang mampu mengkonversi sekelompok data yang pada awalnya saling berkorelasi menjadi data yang tidak saling berkorelasi (Principal Component). Jumlah Principal Component yang dihasilkan sama dengan jumlah data aslinya, tetapi dapat direduksi dengan jumlah yang lebih kecil dan tetap mampu merepresentasikan data asli dengan baik. Sedangkan K-NN merupakan metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Model penelitian yang digunakan dalam penelitian ini adalah prototype, dan tools pengembangan yang digunakan adalah UML. Dalam pembuatan sistem deteksi kualitas sayuran, digunakan bahasa pemrograman MATLAB, dan pengujian menggunakan metode blacbox. hasil dari system ini adalah sistem mampu menghasilkan keluaran berupa pengklasifikasian kualitas dari sayuran secara otomatis.Kata kunci: Klasifiaksi Jenis Sayuran, Algoritma PCA dan K-NNKata kunci : Klasifiaksi Jenis Sayuran, Algoritma PCA dan K-NN","PeriodicalId":325947,"journal":{"name":"Jurnal Real Riset","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Real Riset","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47647/jrr.v5i1.1169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Salah satu bentuk dari kecerdasan tiruan adalah pendeteksian secara otomatis terhadap citra gambar sehingga sistem dapat menentukan dengan tepat jenis gambar tersebut atau biasa disebut computer vision. sayuran merupakan jenistanamanyang banyak dijumpai di Indonesia, akan tetapi banyak dari jenissayuranyang ada di masyarakat berkualitas kurang baik sehingga merugikan konsumen. Oleh karena itu diperlukan sebuah sistem yang dapat mendeteksi kualitas dari sayuran tersebut. Algoritma Principal Component Analysis (PCA) dan algoritma k-nearest neighbor (K-NN) dapat dikombinasikan untuk melakukan pekerjaan tersebut. PCA merupakan algoritma yang mampu mengkonversi sekelompok data yang pada awalnya saling berkorelasi menjadi data yang tidak saling berkorelasi (Principal Component). Jumlah Principal Component yang dihasilkan sama dengan jumlah data aslinya, tetapi dapat direduksi dengan jumlah yang lebih kecil dan tetap mampu merepresentasikan data asli dengan baik. Sedangkan K-NN merupakan metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Model penelitian yang digunakan dalam penelitian ini adalah prototype, dan tools pengembangan yang digunakan adalah UML. Dalam pembuatan sistem deteksi kualitas sayuran, digunakan bahasa pemrograman MATLAB, dan pengujian menggunakan metode blacbox. hasil dari system ini adalah sistem mampu menghasilkan keluaran berupa pengklasifikasian kualitas dari sayuran secara otomatis.Kata kunci: Klasifiaksi Jenis Sayuran, Algoritma PCA dan K-NNKata kunci : Klasifiaksi Jenis Sayuran, Algoritma PCA dan K-NN