High-Frequency Factor Models and Regressions

Yacine Ait-Sahalia, I. Kalniņa, D. Xiu
{"title":"High-Frequency Factor Models and Regressions","authors":"Yacine Ait-Sahalia, I. Kalniņa, D. Xiu","doi":"10.2139/ssrn.3319890","DOIUrl":null,"url":null,"abstract":"We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all components of the model, including idiosyncratic volatility and idiosyncratic jumps. Our empirical analysis investigates the largest dataset in the high-frequency literature. First, we use all traded stocks from NYSE, AMEX, and NASDAQ stock markets for 1996–2017 to construct the five Fama–French factors and the momentum factor at the 5-minute frequency. Second, we document the key empirical properties across all the stocks and the new factors, and apply the nonparametric time series regression model with the new high-frequency Fama–French factors. We find that this factor model is effective in explaining the systematic component of the risk of individual stocks. In addition, we provide evidence that idiosyncratic jumps are related to idiosyncratic events such as earnings disappointments.","PeriodicalId":224732,"journal":{"name":"Chicago Booth Research Paper Series","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chicago Booth Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3319890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We consider a nonparametric time series regression model. Our framework allows precise estimation of betas without the usual assumption of betas being piecewise constant. This property makes our framework particularly suitable to study individual stocks. We provide an inference framework for all components of the model, including idiosyncratic volatility and idiosyncratic jumps. Our empirical analysis investigates the largest dataset in the high-frequency literature. First, we use all traded stocks from NYSE, AMEX, and NASDAQ stock markets for 1996–2017 to construct the five Fama–French factors and the momentum factor at the 5-minute frequency. Second, we document the key empirical properties across all the stocks and the new factors, and apply the nonparametric time series regression model with the new high-frequency Fama–French factors. We find that this factor model is effective in explaining the systematic component of the risk of individual stocks. In addition, we provide evidence that idiosyncratic jumps are related to idiosyncratic events such as earnings disappointments.
高频因子模型与回归
我们考虑一个非参数时间序列回归模型。我们的框架允许对贝塔进行精确的估计,而不需要通常假设贝塔是分段常数。这一特性使我们的框架特别适合研究个股。我们为模型的所有组成部分提供了一个推理框架,包括特殊波动和特殊跳跃。我们的实证分析调查了高频文献中最大的数据集。首先,我们使用1996-2017年纽约证券交易所、美国证券交易所和纳斯达克股票市场的所有交易股票来构建5分钟频率下的五个Fama-French因子和动量因子。其次,我们记录了所有股票和新因素的关键经验属性,并应用具有新高频Fama-French因素的非参数时间序列回归模型。我们发现,该因子模型能够有效地解释个股风险的系统成分。此外,我们提供的证据表明,特殊跳跃与特殊事件有关,如盈利令人失望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信