Sparse signal recovery using a Bernoulli generalized Gaussian prior

Lotfi Chaari, J. Tourneret, C. Chaux
{"title":"Sparse signal recovery using a Bernoulli generalized Gaussian prior","authors":"Lotfi Chaari, J. Tourneret, C. Chaux","doi":"10.1109/EUSIPCO.2015.7362676","DOIUrl":null,"url":null,"abstract":"Bayesian sparse signal recovery has been widely investigated during the last decade due to its ability to automatically estimate regularization parameters. Prior based on mixtures of Bernoulli and continuous distributions have recently been used in a number of recent works to model the target signals, often leading to complicated posteriors. Inference is therefore usually performed using Markov chain Monte Carlo algorithms. In this paper, a Bernoulli-generalized Gaussian distribution is used in a sparse Bayesian regularization framework to promote a two-level flexible sparsity. Since the resulting conditional posterior has anon-differentiable energy function, the inference is conducted using the recently proposed non-smooth Hamiltonian Monte Carlo algorithm. Promising results obtained with synthetic data show the efficiency of the proposed regularization scheme.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Bayesian sparse signal recovery has been widely investigated during the last decade due to its ability to automatically estimate regularization parameters. Prior based on mixtures of Bernoulli and continuous distributions have recently been used in a number of recent works to model the target signals, often leading to complicated posteriors. Inference is therefore usually performed using Markov chain Monte Carlo algorithms. In this paper, a Bernoulli-generalized Gaussian distribution is used in a sparse Bayesian regularization framework to promote a two-level flexible sparsity. Since the resulting conditional posterior has anon-differentiable energy function, the inference is conducted using the recently proposed non-smooth Hamiltonian Monte Carlo algorithm. Promising results obtained with synthetic data show the efficiency of the proposed regularization scheme.
基于伯努利广义高斯先验的稀疏信号恢复
贝叶斯稀疏信号恢复由于其自动估计正则化参数的能力在过去十年中得到了广泛的研究。基于伯努利分布和连续分布混合的先验在最近的一些研究中被用于模拟目标信号,通常会导致复杂的后验。因此,推理通常使用马尔可夫链蒙特卡罗算法执行。本文在稀疏贝叶斯正则化框架中使用伯努利-广义高斯分布来提高两级柔性稀疏性。由于得到的条件后验具有不可微的能量函数,因此使用最近提出的非光滑哈密顿蒙特卡罗算法进行推理。综合数据得到的良好结果表明了所提正则化方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信