{"title":"Recognizing pharmacovigilance named entities in Brazilian Portuguese with CoreNLP","authors":"A. M. R. Cunha, Kele T. Belloze, G. Guedes","doi":"10.5753/bresci.2019.6314","DOIUrl":null,"url":null,"abstract":"Textual data sources may assist in the detection of adverse events not predicted for a particular drug. However, given the amount of information available in several sources, it is reasonable to adopt a computational approach to analyze these sources to search for adverse events. In this scenario, we created an extension of CoreNLP to process Brazilian Portuguese texts from pharma- covigilance area. We trained three natural language models: a Part-of-speech tagger, a parser and a Named Entity Recognizer. Preliminary results indicate success in generating a dependency tree for phrases in the pharmacovigilance area and in identifying pharmacovigilance named entities.","PeriodicalId":306675,"journal":{"name":"Anais do Brazilian e-Science Workshop (BreSci)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Brazilian e-Science Workshop (BreSci)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/bresci.2019.6314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Textual data sources may assist in the detection of adverse events not predicted for a particular drug. However, given the amount of information available in several sources, it is reasonable to adopt a computational approach to analyze these sources to search for adverse events. In this scenario, we created an extension of CoreNLP to process Brazilian Portuguese texts from pharma- covigilance area. We trained three natural language models: a Part-of-speech tagger, a parser and a Named Entity Recognizer. Preliminary results indicate success in generating a dependency tree for phrases in the pharmacovigilance area and in identifying pharmacovigilance named entities.