Scalable and Modular Ultra-Wideband Aided Inertial Navigation

R. Jung, S. Weiss
{"title":"Scalable and Modular Ultra-Wideband Aided Inertial Navigation","authors":"R. Jung, S. Weiss","doi":"10.1109/IROS47612.2022.9981937","DOIUrl":null,"url":null,"abstract":"Navigating accurately in potentially GPS-denied environments is a perquisite of autonomous systems. Relative localization based on ultra-wideband (UWB) is - especially indoors - a promising technology. In this paper, we present a probabilistic filter based Modular Multi-Sensor Fusion (MMSF) approach with the capability of using efficiently all information in a fully meshed UWB ranging network. This allows an accurate mobile agent state estimation and the calibration of the ranging network's spatial constellation. We advocate a new paradigm that includes elements from Collaborative State Estimation (CSE) and allows us considering all stationary UWB anchors and the mobile agent as a decentralized set of estimtors/filters. With this, our method can include all meshed (inter-)sensor observations tightly coupled in a modular estimator. We show that the application of our CSE-inspired method in such a context breaks the computational barrier. Otherwise, it would, for the sakeof complexity-reduction, prohibit the use of all available information or would lead to significant estimator inconsistencies due to coarse approximations. We compare the proposed approach against different MMSF strategies in terms of execution time, accuracy, and filter credibility on both synthetic data and on a dataset from real Unmanned Aerial Vehicles (UAVs).","PeriodicalId":431373,"journal":{"name":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS47612.2022.9981937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Navigating accurately in potentially GPS-denied environments is a perquisite of autonomous systems. Relative localization based on ultra-wideband (UWB) is - especially indoors - a promising technology. In this paper, we present a probabilistic filter based Modular Multi-Sensor Fusion (MMSF) approach with the capability of using efficiently all information in a fully meshed UWB ranging network. This allows an accurate mobile agent state estimation and the calibration of the ranging network's spatial constellation. We advocate a new paradigm that includes elements from Collaborative State Estimation (CSE) and allows us considering all stationary UWB anchors and the mobile agent as a decentralized set of estimtors/filters. With this, our method can include all meshed (inter-)sensor observations tightly coupled in a modular estimator. We show that the application of our CSE-inspired method in such a context breaks the computational barrier. Otherwise, it would, for the sakeof complexity-reduction, prohibit the use of all available information or would lead to significant estimator inconsistencies due to coarse approximations. We compare the proposed approach against different MMSF strategies in terms of execution time, accuracy, and filter credibility on both synthetic data and on a dataset from real Unmanned Aerial Vehicles (UAVs).
可扩展和模块化超宽带辅助惯性导航
在可能无法使用gps的环境中准确导航是自主系统的先决条件。基于超宽带(UWB)的相对定位是一项很有前途的技术,尤其是在室内。本文提出了一种基于概率滤波的模块化多传感器融合(MMSF)方法,该方法能够有效地利用全网格UWB测距网络中的所有信息。这允许一个准确的移动代理状态估计和校准的测距网络的空间星座。我们提倡一种新的范例,其中包括来自协作状态估计(CSE)的元素,并允许我们将所有固定的UWB锚点和移动代理视为一组分散的估计器/过滤器。有了这个,我们的方法可以包括所有网格(间)传感器观测紧密耦合在一个模块化估计。我们表明,在这种情况下应用cse启发的方法打破了计算障碍。否则,为了降低复杂性,它将禁止使用所有可用的信息,或者由于粗略的近似值而导致严重的估计不一致。我们将所提出的方法与不同的MMSF策略在合成数据和真实无人机数据集上的执行时间、准确性和过滤可信度方面进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信