Rearrange Social Overloaded Posts to Prevent Social Overload

Yun-Yen Chuang, Hung-Min Hsu, Tsui-Ying Lin, R. Chang
{"title":"Rearrange Social Overloaded Posts to Prevent Social Overload","authors":"Yun-Yen Chuang, Hung-Min Hsu, Tsui-Ying Lin, R. Chang","doi":"10.1145/3110025.3110078","DOIUrl":null,"url":null,"abstract":"According to the latest investigation, there are 1.7 million active social network users in Taiwan. Previous researches indicated social network posts have a great impact on users, and mostly, the negative impact is from the rising demands of social support, which further lead to heavier social overload. In this study, we propose social overloaded posts detection model (SODM) by deploying the latest text mining and deep learning techniques to detect the social overloaded posts and, then with the developed social overload prevention system (SOS), the social overload posts and non-social overload ones are rearranged with different sorting methods to prevent readers from excessive demands of social support or social overload. The empirical results show that our SOS helps readers to alleviate social overload when reading via social media.","PeriodicalId":399660,"journal":{"name":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3110025.3110078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

According to the latest investigation, there are 1.7 million active social network users in Taiwan. Previous researches indicated social network posts have a great impact on users, and mostly, the negative impact is from the rising demands of social support, which further lead to heavier social overload. In this study, we propose social overloaded posts detection model (SODM) by deploying the latest text mining and deep learning techniques to detect the social overloaded posts and, then with the developed social overload prevention system (SOS), the social overload posts and non-social overload ones are rearranged with different sorting methods to prevent readers from excessive demands of social support or social overload. The empirical results show that our SOS helps readers to alleviate social overload when reading via social media.
重新安排社交超载的帖子,防止社交超载
根据最新的调查,台湾有170万活跃的社交网络用户。以往的研究表明,社交网络帖子对用户的影响很大,而负面影响主要来自于社交支持需求的上升,从而导致社交超载加重。在本研究中,我们利用最新的文本挖掘和深度学习技术,提出社会超载帖子检测模型(SODM)来检测社会超载帖子,然后利用开发的社会超载预防系统(SOS),通过不同的排序方法对社会超载帖子和非社会超载帖子进行重新排列,以防止读者对社会支持的过度需求或社会超载。实证结果表明,我们的SOS可以帮助读者缓解社交媒体阅读时的社交超载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信