Visualizing Parameter Adaptation in Differential Evolution with Expected Fitness Improvement

V. Stanovov, S. Akhmedova, E. Semenkin
{"title":"Visualizing Parameter Adaptation in Differential Evolution with Expected Fitness Improvement","authors":"V. Stanovov, S. Akhmedova, E. Semenkin","doi":"10.1109/SSCI47803.2020.9308467","DOIUrl":null,"url":null,"abstract":"In this paper the expected fitness improvement metric is proposed to visualize the parameter search space in Differential Evolution. The expected fitness improvement is estimated at every generation of the algorithm and plotted in a heatmap profile. The spread of promising scaling factor values is analyzed for the SHADE and jDE algorithms with two different mutation strategies. In addition, the distance between the individuals in the population is considered, and the connection between distance and scaling factor values is observed. The performed experiments reveal important properties of Differential Evolution mutation operators, as well as widely used parameter adaptation techniques.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper the expected fitness improvement metric is proposed to visualize the parameter search space in Differential Evolution. The expected fitness improvement is estimated at every generation of the algorithm and plotted in a heatmap profile. The spread of promising scaling factor values is analyzed for the SHADE and jDE algorithms with two different mutation strategies. In addition, the distance between the individuals in the population is considered, and the connection between distance and scaling factor values is observed. The performed experiments reveal important properties of Differential Evolution mutation operators, as well as widely used parameter adaptation techniques.
具有期望适应度改进的差分进化中参数自适应的可视化
本文提出了期望适应度改进度量来可视化差分进化中的参数搜索空间。在每一代算法中估计期望的适应度改进,并绘制在热图剖面中。分析了采用两种不同变异策略的SHADE和jDE算法中有希望的比例因子值的分布。此外,还考虑了种群中个体之间的距离,并观察了距离与比例因子值之间的关系。实验揭示了差分进化突变算子的重要特性,以及广泛应用的参数自适应技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信