{"title":"The hybridization of plasmons in GaN-based two-dimensional channels","authors":"Lin Wang, Weida Hu, Xiaoshuang Chen, W. Lu","doi":"10.1109/NUSOD.2012.6316491","DOIUrl":null,"url":null,"abstract":"This paper displays the plasmon resonance phenomenon in single channel and double channel (DC) devices with varying dimensions in grating-gate period, slit and spacing between two channels in DC structures at terahertz domain. The results indicate that higher order plasmon can be excited in devices with longer period and narrow slit grating due to the enhanced coupling between plasmon and terahertz radiation. Splitting of plasmon resonance takes places in double channel device due to the hybridization between plasmons, which will improve the tunability of terahertz plasmonic device.","PeriodicalId":337826,"journal":{"name":"2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"35 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2012.6316491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper displays the plasmon resonance phenomenon in single channel and double channel (DC) devices with varying dimensions in grating-gate period, slit and spacing between two channels in DC structures at terahertz domain. The results indicate that higher order plasmon can be excited in devices with longer period and narrow slit grating due to the enhanced coupling between plasmon and terahertz radiation. Splitting of plasmon resonance takes places in double channel device due to the hybridization between plasmons, which will improve the tunability of terahertz plasmonic device.