On Factorization of Functional Operators with Reflection on the Real Axis

O. Karelin, A. Tarasenko
{"title":"On Factorization of Functional Operators with Reflection on the Real Axis","authors":"O. Karelin, A. Tarasenko","doi":"10.37394/23206.2021.20.18","DOIUrl":null,"url":null,"abstract":"Problems of factorization of matrix functions are closely connected with the solution of matrix Riemann boundary value problems and with the solution of vector singular integral equations. In this article, we study functional operators with orientation-reversing shift reflection on the real axes. We introduce the concept of multiplicative representation of functional operators with shift and its partial indices. Based on the classical notion of matrix factorization, the correctness of the definitions is shown. A theorem on the relationship between factorization of functional operators with reflection and factorization of the corresponding matrix functions is proven. Key-Words: Factorization, Functional operators, Carleman shift, Reflection, Matrix Riemann boundary value Problem, Partial indices, Operator identities Received: January 24, 2021. Revised: April 2, 2021. Accepted: April 6, 2021. Published: April 9, 2021.","PeriodicalId":112268,"journal":{"name":"WSEAS Transactions on Mathematics archive","volume":"BC-29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Mathematics archive","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23206.2021.20.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Problems of factorization of matrix functions are closely connected with the solution of matrix Riemann boundary value problems and with the solution of vector singular integral equations. In this article, we study functional operators with orientation-reversing shift reflection on the real axes. We introduce the concept of multiplicative representation of functional operators with shift and its partial indices. Based on the classical notion of matrix factorization, the correctness of the definitions is shown. A theorem on the relationship between factorization of functional operators with reflection and factorization of the corresponding matrix functions is proven. Key-Words: Factorization, Functional operators, Carleman shift, Reflection, Matrix Riemann boundary value Problem, Partial indices, Operator identities Received: January 24, 2021. Revised: April 2, 2021. Accepted: April 6, 2021. Published: April 9, 2021.
关于实轴反射函数算子的分解
矩阵函数的分解问题与矩阵黎曼边值问题的求解和向量奇异积分方程的求解密切相关。本文研究了在实轴上具有方向反转位移反射的泛函算子。引入了平移函数算子及其偏指标的乘法表示的概念。基于经典的矩阵分解概念,证明了定义的正确性。证明了带反射的函数算子的因数分解与相应矩阵函数的因数分解之间的关系定理。关键词:分解,函数算子,Carleman移位,反射,矩阵Riemann边值问题,偏指标,算子恒等式修订日期:2021年4月2日。录用日期:2021年4月6日。发布日期:2021年4月9日。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信