Optimizing Linear and Quadratic Data Transformations for Classification Tasks

J. Valls, R. Aler
{"title":"Optimizing Linear and Quadratic Data Transformations for Classification Tasks","authors":"J. Valls, R. Aler","doi":"10.1109/ISDA.2009.222","DOIUrl":null,"url":null,"abstract":"Many classification algorithms use the concept of distance or similarity between patterns. Previous work has shown that it is advantageous to optimize general Euclidean distances (GED). In this paper, we optimize data transformations, which is equivalent to searching for GEDs, but can be applied to any learning algorithm, even if it does not use distances explicitly. Two optimization techniques have been used: a simple Local Search (LS) and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). CMA-ES is an advanced evolutionary method for optimization in difficult continuous domains. Both diagonal and complete matrices have been considered. The method has also been extended to a quadratic non-linear transformation. Results show that in general, the transformation methods described here either outperform or match the classifier working on the original data.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Many classification algorithms use the concept of distance or similarity between patterns. Previous work has shown that it is advantageous to optimize general Euclidean distances (GED). In this paper, we optimize data transformations, which is equivalent to searching for GEDs, but can be applied to any learning algorithm, even if it does not use distances explicitly. Two optimization techniques have been used: a simple Local Search (LS) and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). CMA-ES is an advanced evolutionary method for optimization in difficult continuous domains. Both diagonal and complete matrices have been considered. The method has also been extended to a quadratic non-linear transformation. Results show that in general, the transformation methods described here either outperform or match the classifier working on the original data.
分类任务的线性和二次数据转换优化
许多分类算法使用模式之间的距离或相似性的概念。以往的研究表明,优化一般欧几里得距离(GED)是有利的。在本文中,我们优化了数据转换,这相当于搜索ged,但可以应用于任何学习算法,即使它没有明确地使用距离。采用了简单局部搜索(LS)和协方差矩阵自适应进化策略(CMA-ES)两种优化技术。CMA-ES是求解困难连续域优化问题的一种先进的进化方法。对角矩阵和完全矩阵都被考虑过。并将该方法推广到二次型非线性变换。结果表明,在一般情况下,这里描述的转换方法优于或匹配在原始数据上工作的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信