Optimal control of a Two-Mass Skate bicycle without steering

G. Perantoni, D. Limebeer
{"title":"Optimal control of a Two-Mass Skate bicycle without steering","authors":"G. Perantoni, D. Limebeer","doi":"10.1109/ICIT.2013.6505661","DOIUrl":null,"url":null,"abstract":"Until recently it was believed that the ability of riderless bicycles to remain upright derives from a combination of the gyroscopic precession of the front wheel and the trail designed into the steering geometry. As it turns out neither influence is necessary for straight-running stability. It is also believed that rider steering torque and/or a roll moment applied to the main frame are required for steering. We show that this long-standing belief is also untrue. All the optimal-control calculations presented are computed off-line.","PeriodicalId":192784,"journal":{"name":"2013 IEEE International Conference on Industrial Technology (ICIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2013.6505661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Until recently it was believed that the ability of riderless bicycles to remain upright derives from a combination of the gyroscopic precession of the front wheel and the trail designed into the steering geometry. As it turns out neither influence is necessary for straight-running stability. It is also believed that rider steering torque and/or a roll moment applied to the main frame are required for steering. We show that this long-standing belief is also untrue. All the optimal-control calculations presented are computed off-line.
无转向双质量滑板自行车的最优控制
直到最近,人们还认为,无人自行车保持直立的能力源于前轮的陀螺仪进动和转向几何结构中设计的轨迹的结合。事实证明,这两种影响对直线行驶的稳定性都不是必需的。它也被认为,骑手转向扭矩和/或滚力矩应用到主框架是需要转向。我们证明这种长期存在的信念也是不正确的。所有的最优控制计算都是离线计算的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信