Local Rules for Computable Planar Tilings

AUTOMATA & JAC Pub Date : 2012-08-14 DOI:10.4204/EPTCS.90.11
Thomas Fernique, M. Sablik
{"title":"Local Rules for Computable Planar Tilings","authors":"Thomas Fernique, M. Sablik","doi":"10.4204/EPTCS.90.11","DOIUrl":null,"url":null,"abstract":"Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.
可计算平面平铺的局部规则
非周期铺层是具有局部约束的非周期铺层。它们在证明多米诺骨牌问题的不可判定性(1964年)和自然模型准晶体(1982年发现)中发挥了关键作用。一个中心问题是,在一类非周期平铺中,对非周期平铺进行表征。在本文中,我们回答了这一问题的非周期平铺,这类平铺是通过对无理性向量空间进行数字化而得到的。也就是说,我们证明了当且仅当数字化向量空间是可计算的,这样的平铺是非周期的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信