Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials

L. G. Ramos, O. Sète, R. Nabben
{"title":"Preconditioning the Helmholtz equation with the shifted Laplacian and Faber polynomials","authors":"L. G. Ramos, O. Sète, R. Nabben","doi":"10.1553/etna_vol54s534","DOIUrl":null,"url":null,"abstract":"We introduce a new polynomial preconditioner for solving the discretized Helmholtz equation preconditioned with the complex shifted Laplace (CSL) operator. We exploit the localization of the spectrum of the CSL-preconditioned system to approximately enclose the eigenvalues by a non-convex ‘bratwurst’ set. On this set, we expand the function 1/z into a Faber series. Truncating the series gives a polynomial, which we apply to the Helmholtz matrix preconditioned by the shifted Laplacian to obtain a new preconditioner, the Faber preconditioner. We prove that the Faber preconditioner is nonsingular for degrees one and two of the truncated series. Our numerical experiments (for problems with constant and varying wavenumber) show that the Faber preconditioner reduces the number of GMRES iterations.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"360 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol54s534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce a new polynomial preconditioner for solving the discretized Helmholtz equation preconditioned with the complex shifted Laplace (CSL) operator. We exploit the localization of the spectrum of the CSL-preconditioned system to approximately enclose the eigenvalues by a non-convex ‘bratwurst’ set. On this set, we expand the function 1/z into a Faber series. Truncating the series gives a polynomial, which we apply to the Helmholtz matrix preconditioned by the shifted Laplacian to obtain a new preconditioner, the Faber preconditioner. We prove that the Faber preconditioner is nonsingular for degrees one and two of the truncated series. Our numerical experiments (for problems with constant and varying wavenumber) show that the Faber preconditioner reduces the number of GMRES iterations.
用移位拉普拉斯多项式和费伯多项式预处理亥姆霍兹方程
提出了一种新的多项式预条件,用于求解以复移拉普拉斯算子为前提的离散化亥姆霍兹方程。我们利用csl预条件系统的谱的局域性,用非凸“bratwurst”集近似地封闭特征值。在这个集合上,我们将函数1/z展开成一个Faber级数。截断该级数得到一个多项式,并将其应用于平移拉普拉斯预条件下的亥姆霍兹矩阵,得到一个新的预条件,即Faber预条件。证明了截断级数的一阶和二阶的Faber预条件是非奇异的。我们的数值实验(对于恒定和变化波数的问题)表明,Faber预调节器减少了GMRES的迭代次数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信