Unsupervised learning for robust Bitcoin fraud detection

Patrick M. Monamo, Vukosi Marivate, Bhekisipho Twala
{"title":"Unsupervised learning for robust Bitcoin fraud detection","authors":"Patrick M. Monamo, Vukosi Marivate, Bhekisipho Twala","doi":"10.1109/ISSA.2016.7802939","DOIUrl":null,"url":null,"abstract":"The rampant absorption of Bitcoin as a cryptographic currency, along with rising cybercrime activities, warrants utilization of anomaly detection to identify potential fraud. Anomaly detection plays a pivotal role in data mining since most outlying points contain crucial information for further investigation. In the financial world which the Bitcoin network is part of by default, anomaly detection amounts to fraud detection. This paper investigates the use of trimmed k-means, that is capable of simultaneous clustering of objects and fraud detection in a multivariate setup, to detect fraudulent activity in Bitcoin transactions. The proposed approach detects more fraudulent transactions than similar studies or reports on the same dataset.","PeriodicalId":330340,"journal":{"name":"2016 Information Security for South Africa (ISSA)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Information Security for South Africa (ISSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSA.2016.7802939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

Abstract

The rampant absorption of Bitcoin as a cryptographic currency, along with rising cybercrime activities, warrants utilization of anomaly detection to identify potential fraud. Anomaly detection plays a pivotal role in data mining since most outlying points contain crucial information for further investigation. In the financial world which the Bitcoin network is part of by default, anomaly detection amounts to fraud detection. This paper investigates the use of trimmed k-means, that is capable of simultaneous clustering of objects and fraud detection in a multivariate setup, to detect fraudulent activity in Bitcoin transactions. The proposed approach detects more fraudulent transactions than similar studies or reports on the same dataset.
鲁棒比特币欺诈检测的无监督学习
随着比特币作为一种加密货币的泛滥,以及网络犯罪活动的增加,需要利用异常检测来识别潜在的欺诈行为。异常检测在数据挖掘中起着至关重要的作用,因为大多数离群点包含了进一步研究的关键信息。在默认情况下,比特币网络是金融世界的一部分,异常检测相当于欺诈检测。本文研究了修剪k-means的使用,它能够在多元设置中同时进行对象聚类和欺诈检测,以检测比特币交易中的欺诈活动。该方法比在相同数据集上的类似研究或报告检测到更多的欺诈交易。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信