THE USE OF DIGITAL SIGNAL PROCESSING AND A NEURAL NETWORK WHEN GENERATING A FORECAST OF TIME SERIES OF DATA FOR THE PURPOSE OF DETECTING ANOMALIES IN THE IN THE AUTOMATED CONTROL OF TECHNOLOGICAL PROCESSES

A. Ragozin
{"title":"THE USE OF DIGITAL SIGNAL PROCESSING AND A NEURAL NETWORK WHEN GENERATING A FORECAST OF TIME SERIES OF DATA FOR THE PURPOSE OF DETECTING ANOMALIES IN THE IN THE AUTOMATED CONTROL OF TECHNOLOGICAL PROCESSES","authors":"A. Ragozin","doi":"10.14529/SECUR200103","DOIUrl":null,"url":null,"abstract":"n order to detect anomalies and improve the quality of forecasting dynamic data flows observed from sensors in Industrial Control System (ACS)., it is proposed to use a predictive mod-ule consisting of a series-connected digital signal processing unit (DSP) and a predictive unit using a neural network (predictive autoencoder ( Auto Encoder), predictive Autoencoder (PAE)). The study showed that the preliminary DSP block of the predicted input signal, consisting of a parallel set (comb) of digital low-pass filters with finite impulse responses (FIR-LPF), leads to a non-equilibrium account of the correlation relationships of the time samples of the input signal and to increase the accuracy of the final prediction result. The predicted autoencoder (PAE) pro-posed and considered in the work, in addition to restoring the input signal or part of the input signal at the PAE output, also generates the predicted samples of the input signal for the speci-fied number of «forward» time steps at the output, which increases the accuracy of the predic-tion result. The reduction of the forecast error occurs due to the imposition of restrictions in the formation of the forecast, that is, an additional requirement to restore the input samples of the samples – «stabilizers» at the NS output. The introduction of «stabilizers» increases the accuracy of the prediction result.","PeriodicalId":270269,"journal":{"name":"Journal of the Ural Federal District. Information security","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Ural Federal District. Information security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/SECUR200103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

n order to detect anomalies and improve the quality of forecasting dynamic data flows observed from sensors in Industrial Control System (ACS)., it is proposed to use a predictive mod-ule consisting of a series-connected digital signal processing unit (DSP) and a predictive unit using a neural network (predictive autoencoder ( Auto Encoder), predictive Autoencoder (PAE)). The study showed that the preliminary DSP block of the predicted input signal, consisting of a parallel set (comb) of digital low-pass filters with finite impulse responses (FIR-LPF), leads to a non-equilibrium account of the correlation relationships of the time samples of the input signal and to increase the accuracy of the final prediction result. The predicted autoencoder (PAE) pro-posed and considered in the work, in addition to restoring the input signal or part of the input signal at the PAE output, also generates the predicted samples of the input signal for the speci-fied number of «forward» time steps at the output, which increases the accuracy of the predic-tion result. The reduction of the forecast error occurs due to the imposition of restrictions in the formation of the forecast, that is, an additional requirement to restore the input samples of the samples – «stabilizers» at the NS output. The introduction of «stabilizers» increases the accuracy of the prediction result.
利用数字信号处理和神经网络对时间序列数据进行预测,以检测异常情况,实现对工艺过程的自动化控制
为了检测异常并提高预测工业控制系统(ACS)中传感器观察到的动态数据流的质量。提出了一种由串联数字信号处理单元(DSP)和采用神经网络的预测单元(预测性自编码器(Auto Encoder)、预测性自编码器(PAE))组成的预测模块。研究表明,预测输入信号的初步DSP块由一组具有有限脉冲响应(FIR-LPF)的数字低通滤波器的并行(梳状)组成,导致输入信号时间样本的相关关系的非平衡描述,并提高最终预测结果的准确性。工作中提出和考虑的预测自编码器(PAE),除了在PAE输出处恢复输入信号或部分输入信号外,还在输出处生成输入信号在指定数量的“前向”时间步长的预测样本,从而提高了预测结果的准确性。预测误差的减小是由于在预测的形成中施加了限制,也就是说,在NS输出中恢复样本的输入样本——“稳定器”的额外要求。“稳定器”的引入提高了预测结果的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信