WaxElephant: A Realistic Hadoop Simulator for Parameters Tuning and Scalability Analysis

Zujie Ren, Zhijun Liu, Xianghua Xu, Jian Wan, Weisong Shi, Min Zhou
{"title":"WaxElephant: A Realistic Hadoop Simulator for Parameters Tuning and Scalability Analysis","authors":"Zujie Ren, Zhijun Liu, Xianghua Xu, Jian Wan, Weisong Shi, Min Zhou","doi":"10.1109/ChinaGrid.2012.25","DOIUrl":null,"url":null,"abstract":"MapReduce is becoming the state-of-the-art computation paradigm for processing large-scale datasets on a large cluster with tens or thousands of nodes. Hadoop, an open-source implementation of MapReduce framework, has gained much popularity due to its high scalability and performance. Two challenging issues for a large-scale Hadoop cluster are how to analyze the scalability and identify the optimal parameters configurations. To address these issues, we designed and implemented a Hadoop simulator called Wax Elephant, which provides the following capabilities: (1) loading real MapReduce workloads derived from the historical log of Hadoop clusters, and replaying the job execution history, (2) synthesizing workloads and executing them based on statistical characteristics of workloads, (3) identifying the optimal parameters configurations, and (4) analyzing the scalability of the cluster. Extensive experiments have been conducted to validate the accuracy of the Wax Elephant simulator.","PeriodicalId":371382,"journal":{"name":"2012 Seventh ChinaGrid Annual Conference","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Seventh ChinaGrid Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ChinaGrid.2012.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

MapReduce is becoming the state-of-the-art computation paradigm for processing large-scale datasets on a large cluster with tens or thousands of nodes. Hadoop, an open-source implementation of MapReduce framework, has gained much popularity due to its high scalability and performance. Two challenging issues for a large-scale Hadoop cluster are how to analyze the scalability and identify the optimal parameters configurations. To address these issues, we designed and implemented a Hadoop simulator called Wax Elephant, which provides the following capabilities: (1) loading real MapReduce workloads derived from the historical log of Hadoop clusters, and replaying the job execution history, (2) synthesizing workloads and executing them based on statistical characteristics of workloads, (3) identifying the optimal parameters configurations, and (4) analyzing the scalability of the cluster. Extensive experiments have been conducted to validate the accuracy of the Wax Elephant simulator.
WaxElephant:一个现实的Hadoop模拟器,用于参数调优和可伸缩性分析
MapReduce正在成为在拥有数十或数千个节点的大型集群上处理大规模数据集的最先进的计算范式。Hadoop是MapReduce框架的开源实现,由于其高可扩展性和高性能而受到广泛欢迎。对于大规模Hadoop集群来说,两个具有挑战性的问题是如何分析可伸缩性和确定最佳参数配置。为了解决这些问题,我们设计并实现了一个名为Wax Elephant的Hadoop模拟器,该模拟器提供以下功能:(1)加载来自Hadoop集群历史日志的真实MapReduce工作负载,并重放作业执行历史;(2)根据工作负载的统计特征合成工作负载并执行;(3)识别最佳参数配置;(4)分析集群的可扩展性。为了验证蜡象模拟器的准确性,进行了大量的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信