Neural manifolds: from basic science to practical improvements in brain-computer intefaces

S. Chase
{"title":"Neural manifolds: from basic science to practical improvements in brain-computer intefaces","authors":"S. Chase","doi":"10.1109/IWW-BCI.2019.8737339","DOIUrl":null,"url":null,"abstract":"Intracortical brain-computer interfaces hold the potential to improve the quality of life for patients living with motor control disorders. However, a critical barrier to the successful clinical translation of these devices is recording instability, which, if unmitigated, can quickly cause control to deteriorate. Recent findings have indicated that high-dimensional neural population activity resides in a low-dimensional “neural manifold”. Here I will introduce the concept of neural manifolds and briefly recap recent findings showing that neural manifolds constrain the types of brain-computer interface mappings that can be easily learned. Finally, I will show how these neural manifolds can be leveraged to mitigate the effects of neural recording instability, enabling stable control in the presence of even severe recording instabilities.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Intracortical brain-computer interfaces hold the potential to improve the quality of life for patients living with motor control disorders. However, a critical barrier to the successful clinical translation of these devices is recording instability, which, if unmitigated, can quickly cause control to deteriorate. Recent findings have indicated that high-dimensional neural population activity resides in a low-dimensional “neural manifold”. Here I will introduce the concept of neural manifolds and briefly recap recent findings showing that neural manifolds constrain the types of brain-computer interface mappings that can be easily learned. Finally, I will show how these neural manifolds can be leveraged to mitigate the effects of neural recording instability, enabling stable control in the presence of even severe recording instabilities.
神经流形:从基础科学到脑机接口的实际改进
皮质内脑机接口有可能改善运动控制障碍患者的生活质量。然而,这些设备成功临床转化的一个关键障碍是记录不稳定性,如果不加以缓解,可能会迅速导致控制恶化。最近的研究表明,高维神经种群活动存在于低维的“神经流形”中。在这里,我将介绍神经流形的概念,并简要回顾最近的发现,这些发现表明神经流形限制了易于学习的脑机接口映射类型。最后,我将展示如何利用这些神经流形来减轻神经记录不稳定性的影响,从而在存在严重记录不稳定性的情况下实现稳定控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信