Drowsy driver detection system using eye blink patterns

T. Danisman, Ian Marius Bilasco, C. Djeraba, Nacim Ihaddadene
{"title":"Drowsy driver detection system using eye blink patterns","authors":"T. Danisman, Ian Marius Bilasco, C. Djeraba, Nacim Ihaddadene","doi":"10.1109/ICMWI.2010.5648121","DOIUrl":null,"url":null,"abstract":"This paper presents an automatic drowsy driver monitoring and accident prevention system that is based on monitoring the changes in the eye blink duration. Our proposed method detects visual changes in eye locations using the proposed horizontal symmetry feature of the eyes. Our new method detects eye blinks via a standard webcam in real-time at 110fps for a 320×240 resolution. Experimental results in the JZU [3] eye-blink database showed that the proposed system detects eye blinks with a 94% accuracy with a 1% false positive rate.","PeriodicalId":404577,"journal":{"name":"2010 International Conference on Machine and Web Intelligence","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine and Web Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMWI.2010.5648121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177

Abstract

This paper presents an automatic drowsy driver monitoring and accident prevention system that is based on monitoring the changes in the eye blink duration. Our proposed method detects visual changes in eye locations using the proposed horizontal symmetry feature of the eyes. Our new method detects eye blinks via a standard webcam in real-time at 110fps for a 320×240 resolution. Experimental results in the JZU [3] eye-blink database showed that the proposed system detects eye blinks with a 94% accuracy with a 1% false positive rate.
昏昏欲睡的司机检测系统使用的眨眼模式
提出了一种基于人眼眨眼时间变化监测的驾驶员疲劳驾驶自动监测与事故预防系统。我们提出的方法利用提出的眼睛的水平对称特征来检测眼睛位置的视觉变化。我们的新方法通过一个标准的网络摄像头以110帧/秒的速度实时检测眨眼,分辨率为320×240。在JZU[3]眨眼数据库中的实验结果表明,该系统检测眨眼的准确率为94%,假阳性率为1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信