An information-theoretic-based evolutionary approach for the dynamic search path planning problem

M. Barkaoui, J. Berger, A. Boukhtouta
{"title":"An information-theoretic-based evolutionary approach for the dynamic search path planning problem","authors":"M. Barkaoui, J. Berger, A. Boukhtouta","doi":"10.1109/ICAdLT.2014.6864073","DOIUrl":null,"url":null,"abstract":"A new information-theoretic-based evolutionary approach is proposed to solve the dynamic search path planning problem. Path planning is achieved using an open-loop model with anticipated feedback while dynamically capturing incoming new requests and real action outcomes/observations as exogenous events, to timely adjust search path plans using coevolution. The approach takes advantage of objective function separability and conditional observation probability independence to efficiently minimize expected system entropy, lateness and travel/discovery time respectively. Computational results clearly show the value of the approach in comparison to a myopic heuristics over various problem instances.","PeriodicalId":166090,"journal":{"name":"2014 International Conference on Advanced Logistics and Transport (ICALT)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Advanced Logistics and Transport (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAdLT.2014.6864073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A new information-theoretic-based evolutionary approach is proposed to solve the dynamic search path planning problem. Path planning is achieved using an open-loop model with anticipated feedback while dynamically capturing incoming new requests and real action outcomes/observations as exogenous events, to timely adjust search path plans using coevolution. The approach takes advantage of objective function separability and conditional observation probability independence to efficiently minimize expected system entropy, lateness and travel/discovery time respectively. Computational results clearly show the value of the approach in comparison to a myopic heuristics over various problem instances.
基于信息理论的动态搜索路径规划进化方法
提出了一种新的基于信息理论的进化方法来解决动态搜索路径规划问题。路径规划使用具有预期反馈的开环模型实现,同时动态捕获传入的新请求和实际操作结果/观察结果作为外生事件,及时调整使用协同进化的搜索路径计划。该方法利用目标函数可分离性和条件观测概率独立性,分别有效地最小化期望系统熵、延迟和旅行/发现时间。计算结果清楚地显示了该方法在各种问题实例中与近视启发式方法相比的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信