Large area graphene electromagnetic devices

T. Szkopek, C. Caloz, H. Skulason
{"title":"Large area graphene electromagnetic devices","authors":"T. Szkopek, C. Caloz, H. Skulason","doi":"10.1109/ANTEM.2014.6887753","DOIUrl":null,"url":null,"abstract":"Large area graphene growth provides a facile route to the development of microwave devices based on the interaction of electromagnetic waves with the two dimensional gas of electrons in a graphene sheet. The strength of microwave scattering with graphene is determined by an impedance mismatch Zσ whose natural scale is itself determined by the fine structure constant α = e2/(4πε0hc). Scattering measurements of graphene monolayer loaded waveguides from 17 Hz to 110 GHz reveal a constant sheet conductance with negligible skin effect owing to monolayer atomic thickness. A Drude conductivity tensor can be used to describe the microwave scattering of a graphene sheet under a static magnetic field bias. Measurement of longitudinal conductivity in a Corbino disk geometry can be used to estimate mobility. Transverse conductivity leads to Faraday rotation, which can be used in hollow waveguide structures to implement a gate voltage tunable isolator. As graphene mobility improves, there is potential to exploit both classical and quantum effects in non-reciprocal devices.","PeriodicalId":190987,"journal":{"name":"2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANTEM.2014.6887753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Large area graphene growth provides a facile route to the development of microwave devices based on the interaction of electromagnetic waves with the two dimensional gas of electrons in a graphene sheet. The strength of microwave scattering with graphene is determined by an impedance mismatch Zσ whose natural scale is itself determined by the fine structure constant α = e2/(4πε0hc). Scattering measurements of graphene monolayer loaded waveguides from 17 Hz to 110 GHz reveal a constant sheet conductance with negligible skin effect owing to monolayer atomic thickness. A Drude conductivity tensor can be used to describe the microwave scattering of a graphene sheet under a static magnetic field bias. Measurement of longitudinal conductivity in a Corbino disk geometry can be used to estimate mobility. Transverse conductivity leads to Faraday rotation, which can be used in hollow waveguide structures to implement a gate voltage tunable isolator. As graphene mobility improves, there is potential to exploit both classical and quantum effects in non-reciprocal devices.
大面积石墨烯电磁器件
大面积石墨烯的生长为基于电磁波与石墨烯片中的二维电子气体相互作用的微波器件的发展提供了一条便捷的途径。石墨烯的微波散射强度由阻抗失配Zσ决定,其自然尺度本身由精细结构常数α = e2/(4πε0hc)决定。对负载石墨烯单层波导在17 Hz至110 GHz范围内的散射测量表明,由于单层原子厚度的影响,薄片电导率恒定,可忽略集肤效应。德鲁德电导率张量可以用来描述静态磁场偏压下石墨烯片的微波散射。测量纵向电导率在一个Corbino盘几何可以用来估计流动性。横向导电性导致法拉第旋转,可用于空心波导结构实现栅极电压可调隔离器。随着石墨烯迁移率的提高,在非互易器件中有可能利用经典效应和量子效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信