Mining Digital Traces to Uncover Global Perception of Bali’s Topmost Destinations

A. Alamsyah, D. P. Ramadhani, Herlambang Septiaji Basuseno
{"title":"Mining Digital Traces to Uncover Global Perception of Bali’s Topmost Destinations","authors":"A. Alamsyah, D. P. Ramadhani, Herlambang Septiaji Basuseno","doi":"10.1109/IWBIS56557.2022.9924920","DOIUrl":null,"url":null,"abstract":"User generated content (UGC) provides abundant tourist information regarding destinations. The textual digital traces bring great opportunity along with great challenges. Text mining approaches including sentiment analysis, multiclass text classification, and network analysis are suitable for extracting the buried pattern under piles of unstructured data. We processed 18.721 reviews from worldwide tourists about Bali’s 15 topmost tourist attractions. This study uncovers the tourist perception through textual data using sentiment analysis to extract the positive and negative perceptions, and multiclass classification to extract the tourist cognitive concern for each destination. We discover the tourist visiting patterns deeper by combining perception tone and cognitive concern results using network analysis to map out the destinations’ popularity, interconnectivity, and major cognitive perception. Most of the tourists disclose positive expressions and give their concerns about Bali’s natural attractions. They feel best for the social setting and environment aspect, and worst for the accessibility. Sacred Monkey Forest Sanctuary is the most favorite destination and a potential point of a visit to other destinations. This research provides insight into the global perception of Bali’s topmost destinations for government and other tourism stakeholders to support the development and improvement of Bali’s tourism.","PeriodicalId":348371,"journal":{"name":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Workshop on Big Data and Information Security (IWBIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWBIS56557.2022.9924920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

User generated content (UGC) provides abundant tourist information regarding destinations. The textual digital traces bring great opportunity along with great challenges. Text mining approaches including sentiment analysis, multiclass text classification, and network analysis are suitable for extracting the buried pattern under piles of unstructured data. We processed 18.721 reviews from worldwide tourists about Bali’s 15 topmost tourist attractions. This study uncovers the tourist perception through textual data using sentiment analysis to extract the positive and negative perceptions, and multiclass classification to extract the tourist cognitive concern for each destination. We discover the tourist visiting patterns deeper by combining perception tone and cognitive concern results using network analysis to map out the destinations’ popularity, interconnectivity, and major cognitive perception. Most of the tourists disclose positive expressions and give their concerns about Bali’s natural attractions. They feel best for the social setting and environment aspect, and worst for the accessibility. Sacred Monkey Forest Sanctuary is the most favorite destination and a potential point of a visit to other destinations. This research provides insight into the global perception of Bali’s topmost destinations for government and other tourism stakeholders to support the development and improvement of Bali’s tourism.
挖掘数字痕迹,揭示全球对巴厘岛顶级目的地的看法
用户生成内容(UGC)提供了丰富的旅游目的地信息。文本数字痕迹在带来巨大挑战的同时,也带来了巨大的机遇。情感分析、多类文本分类和网络分析等文本挖掘方法适合于挖掘成堆的非结构化数据下隐藏的模式。我们处理了来自世界各地游客对巴厘岛15个顶级旅游景点的18.721条评论。本研究通过文本数据揭示旅游者的认知,利用情感分析提取旅游者的积极和消极感知,并采用多类别分类提取旅游者对各目的地的认知关注。通过网络分析,结合感知基调和认知关注结果,对旅游目的地的知名度、关联度和主要认知感知进行深入挖掘。大多数游客都表达了积极的态度,并对巴厘岛的自然景点表示担忧。他们对社交设置和环境方面的感觉最好,对可访问性的感觉最差。圣猴森林保护区是最受欢迎的目的地,也是参观其他目的地的潜在地点。这项研究为政府和其他旅游利益相关者提供了对巴厘岛顶级目的地的全球认知,以支持巴厘岛旅游业的发展和改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信