{"title":"SAT-Inspired Higher-Order Eliminations","authors":"J. Blanchette, Petar Vukmirovi'c","doi":"10.48550/arXiv.2208.07775","DOIUrl":null,"url":null,"abstract":"We generalize several propositional preprocessing techniques to higher-order\nlogic, building on existing first-order generalizations. These techniques\neliminate literals, clauses, or predicate symbols from the problem, with the\naim of making it more amenable to automatic proof search. We also introduce a\nnew technique, which we call quasipure literal elimination, that strictly\nsubsumes pure literal elimination. The new techniques are implemented in the\nZipperposition theorem prover. Our evaluation shows that they sometimes help\nprove problems originating from Isabelle formalizations and the TPTP library.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.07775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We generalize several propositional preprocessing techniques to higher-order
logic, building on existing first-order generalizations. These techniques
eliminate literals, clauses, or predicate symbols from the problem, with the
aim of making it more amenable to automatic proof search. We also introduce a
new technique, which we call quasipure literal elimination, that strictly
subsumes pure literal elimination. The new techniques are implemented in the
Zipperposition theorem prover. Our evaluation shows that they sometimes help
prove problems originating from Isabelle formalizations and the TPTP library.