R. Hung, F. Khaja, K. Hollar, K. Rao, S. Munnangi, Yongmei Chen, M. Okazaki, Yi-Chiau Huang, Xuebin Li, Hua Chung, O. Chan, C. Lazik, M. Jin, Hongwen Zhou, A. Mayur, Namsung Kim, E. Yieh
{"title":"Novel solutions to enable contact resistivity <1E-9 Ω-cm2 for 5nm node and beyond","authors":"R. Hung, F. Khaja, K. Hollar, K. Rao, S. Munnangi, Yongmei Chen, M. Okazaki, Yi-Chiau Huang, Xuebin Li, Hua Chung, O. Chan, C. Lazik, M. Jin, Hongwen Zhou, A. Mayur, Namsung Kim, E. Yieh","doi":"10.1109/VLSI-TSA.2018.8403817","DOIUrl":null,"url":null,"abstract":"In this paper, we present a solution for N&P MOS contact resistivity (p<inf>c</inf>) improvement by adoption of highly doped epitaxial source/drain (S/D), contact ion implantation and advanced laser anneal. An ultra-low ρ<inf>c</inf> =3D 9.01x10<sup>-10</sup> Ωcm<sup>2</sup> on NMOS contact chain (CC) is achieved using highly doped (HD) Si:P selective epi in S/D combined with Ge PAI (pre-amorphization implant) and Applied Materials' nanosecond laser anneal (NLA). In addition, a record low ρ<inf>c</inf> =3D 1.16 x10<sup>-9</sup> Ωcm<sup>2</sup> for PMOS CC is demonstrated by Si<inf>0.55</inf>Ge<inf>045</inf>:B epi, Ga cryo ion implant and NLA. NLA enables super-activation of implanted dopants and dopants in the in-situ HD S/D epi films ([P]: 3.0x10<sup>21</sup>cm<sup>-3</sup> for NSD epi; [B]: 1.0x10<sup>21</sup>cm<sup>-3</sup> for PSD epi). These new process technologies provide a pathway to achieve the target p<inf>c</inf> required for transistor performance in advanced logic devices.","PeriodicalId":209993,"journal":{"name":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2018.8403817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
In this paper, we present a solution for N&P MOS contact resistivity (pc) improvement by adoption of highly doped epitaxial source/drain (S/D), contact ion implantation and advanced laser anneal. An ultra-low ρc =3D 9.01x10-10 Ωcm2 on NMOS contact chain (CC) is achieved using highly doped (HD) Si:P selective epi in S/D combined with Ge PAI (pre-amorphization implant) and Applied Materials' nanosecond laser anneal (NLA). In addition, a record low ρc =3D 1.16 x10-9 Ωcm2 for PMOS CC is demonstrated by Si0.55Ge045:B epi, Ga cryo ion implant and NLA. NLA enables super-activation of implanted dopants and dopants in the in-situ HD S/D epi films ([P]: 3.0x1021cm-3 for NSD epi; [B]: 1.0x1021cm-3 for PSD epi). These new process technologies provide a pathway to achieve the target pc required for transistor performance in advanced logic devices.